

The Nucleus of a
Multiprogramming System∗

(1970)

This paper describes the philosophy and structure of a multiprogramming sys-

tem that can be extended with a hierarchy of operating systems to suit diverse

requirements of program scheduling and resource allocation. The system nu-

cleus simulates an environment in which program execution and input/output

are handled uniformly as parallel, cooperating processes. A fundamental set of

primitives allows the dynamic creation and control of a hierarchy of processes

as well as the communication among them.

1 Introduction

The multiprogramming system developed by Regnecentralen for the RC 4000
computer is a general tool for the design of operating systems. It allows the
dynamic creation of a hierarchy of processes in which diverse strategies of
program scheduling and resource allocation can be implemented.

For the designer of advanced information systems, a vital requirement of
any operating system is that it allow him to change the mode of operation
it controls; otherwise his freedom of design can be seriously limited. Un-
fortunately, this is precisely what present operating systems do not allow.
Most of them are based exclusively on a single mode of operation, such as
batch processing, priority scheduling, real-time scheduling, or conversational
access.

When the need arises, the user often finds it hopeless to modify an op-
erating system that has made rigid assumptions in its basic design about a
specific mode of operation. The alternative—to replace the original operat-
ing system with a new one—is in most computers a serious, if not impossible,

∗P. Brinch Hansen, The nucleus of a multiprogramming system, Communications of
the ACM 13, 4 (April 1970), 238–242. Copyright c© 1970, Association for Computing
Machinery, Inc.

1

2 PER BRINCH HANSEN

matter because the rest of the software is intimately bound to the conven-
tions required by the original system.

This unfortunate situation indicates that the main problem in the design
of a multiprogramming system is not to define functions that satisfy specific
operating needs, but rather to supply a system nucleus that can be extended
with new operating systems in an orderly manner. This is the primary
objective of the RC 4000 system.

In the following, the philosophy and structure of the RC 4000 multipro-
gramming system is explained. The discussion does not include details of
implementation; size and performance are presented, however, to give an
idea of the feasibility of this approach. The functional specifications of the
multiprogramming system are described in detail in a report (Brinch Hansen
1969a) available from Regnecentralen.

2 System Nucleus

Our basic attitude during the designing was to make no assumptions about
the particular strategy needed to optimize a given type of installation, but
to concentrate on the fundamental aspects of the control of an environment
consisting of parallel, cooperating processes.

Our first task was to assign a precise meaning to the process concept,
i.e. to introduce an unambiguous terminology defining what a process is and
how it is implemented on the actual computer.

The next step was to select primitives for the synchronization and trans-
fer of information among parallel processes.

Our final decisions concerned the rules for the dynamic creation, control,
and removal of processes.

The purpose of the system nucleus is to implement these fundamental
concepts: simulation of processes; communication among processes; creation,
control, and removal of processes.

3 Processes

We distinguish between internal and external processes, roughly correspond-
ing to program execution and input/output.

More precisely, an internal process is the execution of one or more inter-
ruptable programs in a given storage area. An internal process is identified
by a unique process name. Thus other processes need not be aware of the

THE NUCLEUS OF A MULTIPROGRAMMING SYSTEM 3

actual location of an internal process in the store, but can refer to it by
name.

A sharp distinction is made between the concepts program and internal
process. A program is a collection of instructions describing a computational
process, whereas an internal process is the execution of these instructions in
a given storage area.

In connection with input/output, the system distinguishes between pe-
ripheral devices, documents, and external processes.

A peripheral device is an item of hardware connected to the data channel
and identified by a device number. A document is a collection of data stored
on a physical medium, such as a deck of punched cards, a printer form, a
reel of magnetic tape, or a file on the backing store.

An external process is the input/output of a given document identified
by a unique process name. This concept implies that internal processes can
refer to documents by name without knowing the actual devices on which
they are mounted.

Multiprogramming and communication between internal and external
processes is coordinated by the system nucleus—an interrupt response pro-
gram with complete control of input/output, storage protection, and the
interrupt system. We do not regard the system nucleus as an independent
process, but rather as a software extension of the hardware structure, which
makes the computer more attractive for multiprogramming. Its function is
to implement our process concept and primitives that processes can invoke
to create and control other processes and communicate with them.

So far we have described the multiprogramming system as a set of inde-
pendent, parallel processes identified by names. The emphasis has been on a
clear understanding of relationships among resources (store and peripherals),
data (programs and documents), and processes (internal and external).

4 Process Communication

In a system of parallel, cooperating processes, mechanisms must be provided
for the synchronization of two processes during a transfer of information.

Dijkstra (1965) has demonstrated that indivisible lock and unlock opera-
tions operating on binary semaphores are sufficient primitives from a logical
point of view. We have been forced to conclude, however, that the sema-
phore concept alone does not fulfill our requirements of safety and efficiency
in a dynamic environment in which some processes may turn out to be black

4 PER BRINCH HANSEN

sheep and break the rules of the game.
Instead we have introduced message buffering within the system nucleus

as the basic means of process communication. The system nucleus adminis-
ters a common pool of message buffers and a message queue for each process.

The following primitives are available for communication between inter-
nal processes:

send message(receiver, message, buffer),
wait message(sender, message, buffer),
send answer(result, answer, buffer),
wait answer(result, answer, buffer).

Send message copies a message into the first available buffer within the
pool and delivers it in the queue of a named receiver. The receiver is acti-
vated if it is waiting for a message. The sender continues after being informed
of the identity of the message buffer.

Wait message delays the requesting process until a message arrives in its
queue. When the process is allowed to proceed, it is supplied with the name
of the sender, the contents of the message, and the identity of the message
buffer. The buffer is removed from the queue and made ready to transmit
an answer.

Send answer copies an answer into a buffer in which a message has been
received and delivers it in the queue of the original sender. The sender of the
message is activated if it is waiting for the answer. The answering process
continues immediately.

Wait answer delays the requesting process until an answer arrives in a
given buffer. On arrival, the answer is copied into the process and the buffer
is returned to the pool. The result specifies whether the answer is a response
from another process or a dummy answer generated by the system nucleus
in response to a message addressed to a nonexisting process.

The procedure wait message forces a process to serve its queue on a first-
come, first-served basis. The system, however, also includes two primitives
that enable a process to wait for the arrival of the next message or answer
and serve its queue in any order.

This communication system has the following advantages.
The multiprogramming system is dynamic in the sense that processes

appear and disappear at any time. Therefore a process does not in general
have a complete knowledge of the existence of other processes. This is re-
flected in the procedure wait message, which makes it possible for a process

THE NUCLEUS OF A MULTIPROGRAMMING SYSTEM 5

to be unaware of the existence of other processes until it receives messages
from them.

On the other hand, once a communication has been established between
two processes (i.e. by means of a message) they need a common identification
of it in order to agree on when it is terminated (i.e. by means of an answer).
Thus we can properly regard the selection of a buffer as the creation of
an identification of a conversation. A happy consequence of this is that it
enables two processes to exchange more than one message at a time.

We must be prepared for the occurrence of erroneous or malicious pro-
cesses in the system (e.g. undebugged programs). This is tolerable only if
the system nucleus ensures that no process can interfere with a conversa-
tion between two other processes. This is done by storing the identity of
the sender and receiver in each buffer and checking it whenever a process
attempts to send or wait for an answer in a given buffer.

Efficiency is obtained by the queueing of buffers, which enables a sending
process to continue immediately after delivery of a message or an answer,
regardless of whether or not the receiver is ready to process it.

To make the system dynamic, it is vital that a process can be removed at
any time, even if it is engaged in one or more conversations. In this case, the
system nucleus leaves all messages from the removed process undisturbed
in the queues of other processes. When these processes answer them, the
system nucleus returns the buffers to the common pool.

The reverse situation is also possible: during the removal of a process,
the system nucleus finds unanswered messages sent to the process. These
are returned as dummy answers to the senders.

The main drawback of message buffering is that it introduces yet another
resource problem, since the common pool contains a finite number of buffers.
If a process were allowed to empty the pool by sending messages to ignorant
processes, which do not respond with answers, further communication within
the system would be blocked. Consequently a limit is set to the number of
messages a process can send simultaneously. By doing this, and by allowing
a process to transmit an answer in a received buffer, we have placed the
entire risk of a conversation on the process that opens it.

5 External Processes

Originally the communication primitives were designed for the exchange of
messages between internal processes. Later we also decided to use send

6 PER BRINCH HANSEN

message and wait answer for communication between internal and external
processes.

For each kind of external process, the system nucleus contains a piece
of code that interprets a message from an internal process and initiates in-
put/output using a storage area specified in the message. When input/output
is terminated by an interrupt, the nucleus generates an answer to the internal
process with information about actual block size and possible error condi-
tions. This is essentially the implementation of the external process concept.

We consider it to be an important aspect of the system that internal
and external processes are handled uniformly as independent, self-contained
processes. The difference between them is merely a matter of processing
capability. A consequence of this is that any external process can be replaced
by an internal process of the same name if more complex criteria of access
and response become desirable.

External processes are created on request from internal processes. Cre-
ation is simply the assignment of a name to a particular peripheral device.
To guarantee internal processes exclusive access to sequential documents,
primitives are available for the reservation and release of external processes.

Typewriter consoles are the only external processes that can send mes-
sages to internal processes. The operator opens a conversation by pushing
an interrupt key and typing the name of the internal receiver followed by a
line of text.

A file on the backing store can be used as an external process by copying
a description of the file from a catalog on the backing store into the sys-
tem nucleus; following this, internal processes can initiate input/output by
sending messages to the file process.

Real-time synchronization of internal processes is obtained by sending
messages to a clock process. After the elapse of a time interval specified in
the message, the clock returns an answer to the sending process.

In general, external processes can be used to obtain synchronization be-
tween internal processes and any signal from the external world. For ex-
ample, an internal process may send a message to a watchdog process and
receive an answer when a magnetic tape is mounted on a station. In re-
sponse, the internal process can give the station a temporary name, identify
the tape by reading its label, and rename the station accordingly.

THE NUCLEUS OF A MULTIPROGRAMMING SYSTEM 7

6 Internal Processes

A final set of primitives in the system nucleus allows the creation, control,
and removal of internal processes.

Internal processes are created on request from other internal processes.
Creation involves the assignment of a name to a contiguous storage area
selected by the parent process. The storage area must be within the parent’s
own area.

After creation, the parent process can load a program into the child
process and start it. The child process now shares computing time with
other active processes including the parent process.

On request from a parent process, the system nucleus waits for the com-
pletion of all input/output initiated by a child process and stops it. In the
stopped state, the process can still receive messages and answers in its queue.
These can be served when the process is restarted.

Finally, a parent process can remove a child process in order to assign
its storage area to other processes.

According to our philosophy, processes should have complete freedom
to choose their own strategy of program scheduling. The system nucleus
only supplies the essential primitives for initiation and control of processes.
Consequently, the concepts of program loading and swapping are not part
of the nucleus. Time-sharing of a common storage area among children on
a swapping basis is possible, however, because the system does not check
whether internal processes overlap each other as long as they remain within
the storage areas of their parents. Swapping from process A to process B
can be implemented in a parent process as follows: stop(A); output(A);
input(B); start(B).

7 Process Hierarchy

The idea of the system nucleus has been described as the simulation of an
environment in which program execution and input/output are handled uni-
formly as parallel, cooperating processes. A fundamental set of primitives
allows the dynamic creation and control of processes as well as communica-
tion among them.

For a given installation we still need, as part of the system, programs
that control strategies of operator communication, program scheduling, and
resource allocation; but it is essential for the orderly growth of the system

8 PER BRINCH HANSEN

that these operating systems be implemented as other programs. Since the
difference between operating systems and production programs is one of
jurisdiction only, this problem is solved by arranging the internal processes
in a hierarchy in which parent processes have complete control over child
processes.

After initial loading, the internal store contains the system nucleus and a
basic operation system, S, which can create parallel processes, A, B, C, etc.,
on request from consoles. The processes can in turn create other processes,
D, E, F, etc. Thus while S acts as a primitive operating system for A, B,
and C, these in turn act as operating systems for their children, D, E, and
F. This is illustrated by Fig. 1, which shows a family tree of processes on
the left and the corresponding storage allocation on the right. This family
tree of processes can be extended to any level, subject only to a limitation
of the total number of processes.

mS
m m m�
�
��

@
@

@@

A B C

�
�
�

B
B
B

m m mD E F

�
�
�

B
B
B

m mG H

SYSTEM NUCLEUS

S

A

B

C

D

E

F G

H

Figure 1 Process tree and storage allocation.

In this multiprogramming system, all privileged functions are imple-
mented in the system nucleus, which has no built-in strategy. Strategies
can be introduced at the various higher levels, where each process has the
power to control the scheduling and resource allocation of its children. The
only rules enforced by the nucleus are the following: A process can only al-
locate a subset of its own resources (including storage and message buffers)
to its children; a process can only start, stop, and remove its own children
(including their descendants). After removal of a process, its resources are
returned to the parent process. Initially all system resources are owned by

THE NUCLEUS OF A MULTIPROGRAMMING SYSTEM 9

the basic operating system S. For details of process control and resource al-
location, the reader should consult the manual of the system (Brinch Hansen
1969a).

We emphasize that the only function of the family tree is to define the
rules of process control and resource allocation. Computing time is shared by
round-robin scheduling among active processes regardless of their position
in the hierarchy, and each process can communicate with all other processes.

Regarding the future development of operating systems, the most impor-
tant characteristics of the system can now be seen as the following:

1. New operating systems can be implemented as other programs without
modification of the system nucleus. In this connection, we should
mention that the Algol and Fortran languages for the RC 4000 contain
facilities for calling the nucleus and initiating parallel processes. Thus
it is possible to write operating systems in high-level languages.

2. Operating systems can be replaced dynamically, thus enabling an in-
stallation to switch among various modes of operation; several operat-
ing systems can, in fact, be active simultaneously.

3. Standard programs and user programs can be executed under differ-
ent operating systems without modification, provided there is common
agreement on the possible communication between parents and chil-
dren.

8 Implementation

The RC 4000 is a 24-bit, binary computer with typical instruction execu-
tion times of 4 microseconds (Brinch Hansen 1969b). It permits practically
unlimited expansion of the internal store and standardized connection of all
kinds of peripherals. Multiprogramming is facilitated by program interrup-
tion, storage protection, and privileged instructions.

The present implementation of the system makes multiprogramming fea-
sible with a minimum store of 16K–32K words backed by a fast drum or disk.
The system nucleus includes external processes for a real-time clock, type-
writers, paper tape input/output, line printer, magnetic tape, and files on
the backing store. The size of the nucleus and the basic operating system is
as follows:

10 PER BRINCH HANSEN

words
primitives 2400
code for external processes 1150
process descriptions and buffers 1250
system nucleus 4800
basic operating system 1400

6200

The communication primitives are executed in the uninterruptable mode
within the system nucleus. The execution times of these set a limit to the
system’s response to real-time events:

msec
send message 0.6
wait answer 0.4
wait message 0.4
send answer 0.6

An analysis shows that the 2 milliseconds required by a complete con-
versation (the sum of the four primitives) are used as follows:

percent
validity checking 25
process activation 45
message buffering 30

This distribution is so even that one cannot hope to increase the speed of
the system by introducing additional, ad hoc machine instructions. The only
realistic solution is to make the hardware faster.

The primitives for creation, start, stop, and removal of processes are im-
plemented in an anonymous internal process within the system nucleus to
avoid intolerably long periods in the uninterruptable mode. Typical execu-
tion times for these are:

msec
create process 3
start process 26
stop process 4
remove process 30

The excessive times for the start and removal of an internal process are due
to the peculiar storage protection system of the RC 4000, which requires the
setting of a protection key in every storage word of a process.

THE NUCLEUS OF A MULTIPROGRAMMING SYSTEM 11

9 Conclusion

Ideas similar to those described here have been suggested by others (Harrison
1967; Huxtable 1967; Wichmann 1968). We have presented our system be-
cause we feel that, taken as a whole, it represents a systematic and practical
approach to the design of replaceable operating systems. As an inspiration to
other designers, it is perhaps most important that it illustrates a sequence
of design steps leading to a general nucleus, namely, the definition of the
process concept, the communication scheme, and the dynamic creation and
structuring of processes.

We realize, of course, that a final evaluation of the system can only be
made after it has been used to design a number of operating systems.

Acknowledgements

The design philosophy was developed by Jørn Jensen, Søren Lauesen, and
the author. Leif Svalgaard participated in the implementation and testing
of the final product.

Regarding fundamentals, we have benefited greatly from Dijkstra’s anal-
ysis of cooperating sequential processes.

References

Brinch Hansen, P., Ed. 1969a. RC 4000 Software: Multiprogramming System. Regnecen-
tralen, Copenhagen, Denmark, (April).

Brinch Hansen, P. Ed. 1969b. RC 4000 Computer: Reference Manual. Regnecentralen,
Copenhagen, Denmark, (June).

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind-
hoven, The Netherlands, (September).

Harrison, M.C., and Schwartz, J.T. 1967. SHARER, a time sharing system for the CDC
6600. Communications of the ACM 10, 10 (October), 659–665.

Huxtable, D.H.R., and Warwick, M.T. 1967. Dynamic supervisors—their design and con-
struction. ACM Symposium on Operating System Principles, Gatlinburg, TN, (Octo-
ber).

Wichmann, B.A. 1968. A modular operating system. Proceedings of the IFIP Congress
68, Edinburgh, United Kingdom. North Holland, Amsterdam, The Netherlands, 1969,
548–556.

