

JAVA’S INSECURE PARALLELISM

PER BRINCH HANSEN

(1999)

The author examines the synchronization features of Java and finds that they

are insecure variants of his earliest ideas in parallel programming published

in 1972–73. The claim that Java supports monitors is shown to be false. The

author concludes that Java ignores the last twenty-five years of research in

parallel programming languages.

We must expect posterity
to view with some asperity

the marvels and the wonders
we’re passing on to it;

but it should change its attitude
to one of heartfelt gratitude

when thinking of the blunders
we didn’t quite commit.

Piet Hein (1966)

1 PLATFORM-INDEPENDENT PARALLEL PROGRAMMING

Java has resurrected the well-known idea of platform-independent parallel
programming. In this paper I examine the synchronization features of Java
to discover their origin and determine if they live up to the standards set by
the invention of monitors and Concurrent Pascal a quarter of a century ago.

In the 1970s my students and I demonstrated that it is possible to write
nontrivial parallel programs exclusively in a secure language that supports
monitors. The milestones of this work were:

P. Brinch Hansen, Java’s insecure parallelism, SIGPLAN Notices 34, 4 (April 1999), 38–45.
Copyright c© 1999, Per Brinch Hansen.

1

2 PER BRINCH HANSEN

• The idea of associating explicit queues with monitors (Brinch Hansen
1972).

• A class notation for monitors (Brinch Hansen 1973).

• A monitor language, Concurrent Pascal (Brinch Hansen 1975a).

• A portable compiler that generated platform-independent parallel code
(Hartmann 1975).

• A portable interpreter that ran platform-independent parallel code on
a wide variety of computers (Brinch Hansen 1975b).

• A portable operating system, Solo, written in Concurrent Pascal (Brinch
Hansen 1976).

• A book on abstract parallel programming (Brinch Hansen 1977).

Monitors and Concurrent Pascal inspired other researchers to develop moni-
tor variants (Hoare 1974a) and more than a dozen monitor languages, includ-
ing Modula (Wirth 1977), Pascal Plus (Welsh 1979), and Mesa (Lampson
1980). The portable implementation of Concurrent Pascal was widely dis-
tributed and used on a variety of computers ranging from mainframes to
microcomputers (Brinch Hansen 1993b).

2 SECURITY AGAINST INTERFERENCE

Hoare (1974b) introduced the essential requirement that a programming
language must be secure in the following sense: The language should enable
a compiler and its run-time system to detect as many cases as possible in
which the language concepts break down and produce meaningless results.1

For a parallel programming language the most important security measure
is to check that processes access disjoint sets of variables only and do not
interfere with each other in time-dependent ways.

The Concurrent Pascal compiler checked that every process and monitor
only referred to its own variables; that processes interacted through monitor
procedures only; and that processes did not deadlock by calling monitors
recursively (either directly or indirectly).

1This definition of security differs somewhat from its usual meaning of “the ability of
a system to withstand attacks from adversaries” (Naur 1974).

JAVA’S INSECURE PARALLELISM 3

The Concurrent Pascal interpreter ensured mutual exclusion of all oper-
ations on the variables of any process or monitor. It even made it impossible
for a process and a peripheral device to access the same variable simultane-
ously.

Unless the parallel features of a programming language are secure in
this sense, the effect of a parallel program is generally both unpredictable
and time-dependent and is therefore meaningless. This does not necessarily
prevent you from writing correct parallel programs. It does, however, force
you to use a low-level, error-prone notation that precludes effective error
checking during compilation and execution.

From the beginning, Hoare and I recommended extensive compile-time
checking of modular parallel programs as an effective way of preventing most
time-dependent errors. However, by 1991 Hoare sadly concluded that “a
subsequent generation has lost that understanding.” If you are unfamiliar
with the rationale for interference control, you should study the history of
the field from 1971–75. I see no point in repeating what I carefully explained
and published decades ago. The reliability of this programming approach
has been amply demonstrated in practice.

3 SHARED CLASSES

My operating systems book (Brinch Hansen 1973) introduced the first pro-
gramming notation for monitors, shared classes, based on a restricted form of
the class concept of Simula 67 (Dahl 1972). The book includes the bounded
buffer shown in Fig. 1. (I have replaced my original Pascal notation with
Java syntax.)
This notation introduces a class of message buffers of the same type B. Each
buffer may be shared by parallel threads. The buffer concept is defined
in terms of its data representation, the possible operations on it, and its
initialization. In Java terminology these class components are known as the
instance variables, synchronized methods, and the constructor of a buffer.

A buffer instance b of type B is declared and used as follows by parallel
threads:

B b; b.send(5); int x = b.receive();

For a particular class instance b, the following restrictions apply:

• The instance variables are private to the class instance and can only
be accessed within the class.

4 PER BRINCH HANSEN

shared class B
{ int max = 10, p, c, full;
int[] buffer = new int[max];

public void send(int m)
{ await (full < max);

buffer[p] = m;
p = (p + 1) % max;
full = full + 1;

}

public int receive()
{ await (full > 0);

int m = buffer[c];
c = (c + 1) % max;
full = full - 1;
return m;

}

public B()
{ p = 0; c = 0; full = 0; }

}

Figure 1 A shared class with await statements (1973)

• The synchronized methods are executed strictly one at a time as critical
regions on the instance variables.

Hoare (1972) had introduced the concept of a conditional critical region
that is delayed until a shared data structure satisfies a Boolean condition. In
a shared class, I expressed the same idea by means of an await statement,
which can occur anywhere within a critical region (Brinch Hansen 1972).

4 EXPLICIT QUEUES

At the time I was concerned about the inefficiency of conditional critical
regions which retest Boolean conditions repeatedly until they are true. As
an alternative I decided to let the programmer control the frequency with
which scheduling expressions are reevaluated. I did this by associating explicit
queues with shared variables. Critical regions can delay calling processes in
these queues and resume them later (Brinch Hansen 1972).

Figure 2 illustrates this idea. The buffer class is extended with a single
queue variable e of type event. Every synchronized method now begins with
a waiting loop of the form

JAVA’S INSECURE PARALLELISM 5

shared class B
{ int max = 10, p, c, full;

int[] buffer = new int[max];
event e;

public void send(int m)
{ while (full == max) await(e);

buffer[p] = m;
p = (p + 1) % max;
full = full + 1;
cause(e);

}

public int receive()
{ while (full == 0) await(e);

int m = buffer[c];
c = (c + 1) % max;
full = full - 1;
cause(e);
return m;

}

public B()
{ p = 0; c = 0; full = 0; }

}

Figure 2 A shared class with an explicit queue (1972)

while (!condition) await(e);

and ends with the statement cause(e). The await operation makes a pro-
cess leave its critical region and enter the queue e. The cause operation
enables all processes in the queue e to eventually reenter their critical re-
gions one at a time.

The programmer can control the scheduling of processes to any degree
desired by associating each queue with a group of similar processes or an
individual process. Since every instance of a Java class uses a single queue
only, I have imposed the same restriction on Fig. 2.

The key idea is that the queuing operations automatically maintain mu-
tual exclusion of all access to monitor variables during the evaluation of
scheduling conditions.

Since my proposal was completely unrelated to the unpredictable event
queues of the 1960s, I will call them explicit queues in this paper.

All subsequent monitor proposals were based on minor variations of the

6 PER BRINCH HANSEN

same ideas: A monitor is essentially a shared class with explicit queues.

5 SYNCHRONIZED JAVA METHODS

Only trivial changes are required to turn the shared class (Fig.2) into a
correct Java class (Fig.3):

• The class is no longer declared as shared.

• The instance variables are declared as private.

• The class methods are declared as synchronized methods that may
cause a run-time Exception.

• The queue variable e is replaced by a single anonymous queue.

• The scheduling methods, await and cause are renamed wait and
notifyAll.

I remark in passing that I have no idea what general meaning the Java
designers ascribe to a “critical region” that can be interrupted by exceptions
(even if it includes an exception handler).

A comparison of Figs. 1–3 makes it clear that a Java class with syn-
chronized methods, waiting loops and notifyAll statements is a variant of
my earliest ideas in parallel programming: the shared class and scheduling
queues, published in 1972–73.

Hoare’s (1974a) contribution to the monitor concept was to replace my
resume-all queues with first-in, first-out queues (known as conditions). Java
includes a first-in, first-out variant of the notifyAll method, named notify.

Gosling (1996, p. 399) claims that Java uses monitors to synchronize
threads. Unfortunately, a closer inspection reveals that Java does not support
a monitor concept:

• Unless they are declared as synchronized, Java class methods are
unsynchronized.

• Unless they are declared as private, Java class variables are public
(within a package).

Consequently, parallel threads can access shared variables, either directly or
indirectly, without any synchronization. One can, in fact, write a Java class

JAVA’S INSECURE PARALLELISM 7

class B
{ private int max = 10, p, c, full;

private int[] buffer = new int[max];

public synchronized void send(int m)
throws Exception

{ while (full == max) wait();
buffer[p] = m;
p = (p + 1) % max;
full = full + 1;
notifyAll();

}

public synchronized int receive()
throws Exception

{ while (full == 0) wait();
int m = buffer[c];
c = (c + 1) % max;
full = full - 1;
notifyAll();
return m;

}

public B()
{ p = 0; c = 0; full = 0; }

}

Figure 3 A Java class with synchronized methods (1996)

that uses both private and public variables accessed by both synchronized
and unsynchronized methods.

I do not see how one can assign any general meaning to a programming
notation that invites time-dependent errors as the default case. Nor do I
see how a compiler can detect such errors. The failure to give an adequate
meaning to thread interaction is a very deep flaw of Java that vitiates the
conceptual integrity of the monitor concept.

Well, if Fig. 3 is not a Java monitor, what is it then? It is just a pro-
gramming style that imitates insecure monitors. Almost any programming
language (including assembly language) enables you to adopt programming
styles based on abstract concepts that are not supported directly by the
language.

Since every Java object is associated with a single anonymous queue only,
it would have been a significant improvement if Java had adopted my original
shared classes with the await statements and access restrictions described

8 PER BRINCH HANSEN

earlier (Fig. 1).

6 JAVA’S MISTAKE

Java’s most serious mistake was the decision to use the sequential part of
the language to implement the run-time support for its parallel features. It
strikes me as absurd to write a compiler for the sequential language concepts
only and then attempt to skip the much more difficult task of implementing
a secure parallel notation. This wishful thinking is part of Java’s unfortunate
inheritance of the insecure C language and its primitive, error-prone library
of threads methods.

Six years ago, I wrote (Brinch Hansen 1993a):

The 1980s will probably be remembered as the decade in which
programmers took a gigantic step backwards by switching from
secure Pascal-like languages to insecure C-like languages. I have
no rational explanation for this trend. But it seems to me that if
computer programmers cannot even agree that security is an es-
sential requirement of any programming language, then we have
not yet established a discipline of computing based on commonly
accepted principles.

In 1975 Concurrent Pascal demonstrated that platform-independent par-
allel programs (even small operating systems) can be written in a secure
programming language with monitors. It is astounding to me that Java’s
insecure parallelism is taken seriously by the programming community, a
quarter of a century after the invention of monitors and Concurrent Pascal.
It has no merit.

Although the development of parallel languages began around 1972, it
did not stop there. Today we have three major communication paradigms:
monitors, remote procedures, and message passing. Any one of them would
have been a vast improvement over Java’s insecure variant of shared classes.
As it is, Java ignores the last twenty-five years of research in parallel lan-
guages.

7 YOU GOTTA HAVE STYLE

If programmers no longer see the need for interference control then I have ap-
parently wasted my most creative years developing rigorous concepts which
have now been compromised or abandoned by programmers.

JAVA’S INSECURE PARALLELISM 9

However, if you agree with me, but consider it futile to swim against the
tide of the times, it seems appropriate to end this paper on programming
language design by quoting Peter Naur’s (1992) comments about the related
subjects of writing and programming style [with emphasis added]:

Good writing is very difficult, even for persons who have complete
mastery of everyday spoken language. Good style is achieved
only through insight, practice, and effort. By analogy we can
expect good programming style to remain a combination of sound
principles, talent, and work, and the fight against poor style is
never ending.

Acknowledgements

It is a pleasure to acknowledge the helpful comments of Jonathan Green-
field, Al Hartmann, Giorgio Ingargiola, Henk Kruijer, Ted Lewis, Michael
McKeag, Peter O’Hearn and Charles Reynolds.

References

Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the ACM 15,
7 (July), 574–578.

Brinch Hansen, P. 1973. Operating System Principles, Section 7.2 Class Concept, July,
226–232, Englewood Cliffs NJ: Prentice Hall.

Brinch Hansen, P. 1975a. The programming language Concurrent Pascal. IEEE Trans-
actions on Software Engineering 1, June, 199–207.

Brinch Hansen, P. 1975b. Concurrent Pascal machine. Information Science, California
Institute of Technology, Pasadena, CA, October.

Brinch Hansen, P. 1976. The Solo operating system. Software–Practice and Experience 6,
2 (April–June), 141–200.

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice Hall, Engle-
wood Cliffs, NJ. Includes Brinch Hansen 1975a, 1975b, 1976.

Brinch Hansen, P. 1993a. Letter to C. A. R. Hoare, February 20.

Brinch Hansen, P. 1993b. Monitors and Concurrent Pascal: A personal history. 2nd
ACM Conference on the History of Programming Languages, April, Cambridge
MA: 1–35.

Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. 1972. Structured Programming, 175–
220. New York: Academic Press, 175–220.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification, Reading
MA: Addison-Wesley.

Hartmann, A.C. 1975. A Concurrent Pascal compiler for minicomputers. Pasadena CA:
Information Science, California Institute of Technology.

Hein, P. 1966. Grooks. Cambridge MA: The M.I.T. Press.

10 PER BRINCH HANSEN

Hoare, C. A. R. 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C. A. R. Hoare and R. H. Perrott, Eds., New York: Academic Press,
61–71.

Hoare, C. A. R. 1974a. Monitors: an operating system structuring concept. Communi-
cations of the ACM 17, (October), 549–557.

Hoare, C. A. R. 1974b. Hints on programming language research. In Computer Systems
Reliability, C. Bunyan, Ed., Berkshire, England: Infotech International, 505–534.

Hoare, C. A. R. 1991. Letter to the author. Reprinted in Brinch Hansen [1993b].

Lampson, B. W., and Redell, D. D. 1980. Experience with processes and monitors in
Mesa. Communications of the ACM 23, 2 (February), 105–117.

Naur, P. 1974. Concise Survey of Computer Methods. Lund, Sweden: Studentlitteratur.

Naur, P. 1992. Computing: A Human Activity. Reading MA: Addison-Wesley Publish-
ing.

Welsh, J., and Bustard, D. W. 1979. Pascal-Plus—another language for modular multi-
programming. Software—Practice and Experience 9, 11 (November), 947–957.

Wirth, N. 1977. Modula: a programming language for modular multiprogramming.
Software—Practice and Experience 7, 1 (January–February), 3–35.

