Parallel Cellular Automata: A Model
Program for Computational Science*

(1993)

We develop a generic program for parallel execution of cellular automata on
a multicomputer. The generic program is then adapted for simulation of a
forest fire and numerical solution of Laplace’s equation for stationary heat
flow. The performance of the parallel program is analyzed and measured on
a Computing Surface configured as a matrix of transputers with distributed

memory.

1 Introduction

This is one of several papers that explore the benefits of developing model
programs for computational science (Brinch Hansen 1990, 1991a, 1991b,
1992a). The theme of this paper is parallel cellular automata.

A cellular automaton is a discrete model of a system that varies in space
and time. The discrete space is an array of identical cells, each representing a
local state. As time advances in discrete steps, the system evolves according
to universal laws. Every time the clock ticks, the cells update their states
simultaneously. The next state of a cell depends only on the current state
of the cell and its nearest neighbors.

In 1950 John von Neuman and Stan Ulam introduced cellular automata
to study self-reproducing systems (von Neumann 1966; Ulam 1986). John
Conway’s game of Life is undoubtedly the most widely known cellular au-
tomaton (Gardner 1970, 1971; Berlekamp 1982). Another well known au-
tomaton simulates the life cycles of sharks and fish on the imaginary planet
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Wa-Tor (Dewdney 1984). The numerous applications include forest infesta-
tion (Hoppensteadt 1978), fluid flow (Frisch 1986), earthquakes (Bak 1989),
forest fires (Bak 1990) and sandpile avalanches (Hwa 1989).

Cellular automata can simulate continuous physical systems described by
partial differential equations. The numerical solution of, say, Laplace’s equa-
tion by grid relaxation is really a discrete simulation of heat flow performed
by a cellular automaton.

Cellular automata are ideally suited for parallel computing. My goal
is to explore programming methodology for multicomputers. 1 will illustrate
this theme by developing a generic program for parallel execution of cellular
automata on a multicomputer with a square matrix of processor nodes. I
will then show how easy it is to adapt the generic program for two different
applications: (1) simulation of a forest fire, and (2) numerical solution of
Laplace’s equation for stationary heat flow. On a Computing Surface with
transputer nodes, the parallel efficiency of these model programs is close to
one.

2 Cellular Automata

A cellular automaton is an array of parallel processes, known as cells. Every
cell has a discrete state. At discrete moments in time, the cells update their
states simultaneously. The state transition of a cell depends only on its
previous state and the states of the adjacent cells.

I will program a two-dimensional cellular automaton with fized boundary
states (Fig. 1). The automaton is a square matrix with three kinds of cells:

1. Interior cells, marked “7”, may change their states dynamically.

2. Boundary cells, marked “4”, have fixed states.

9

3. Corner cells, marked“—", are not used.

Figure 2 shows an interior cell and the four neighbors that may influence
its state. These five cells are labeled ¢ (central), n (north), s (south), e (east),
and w (west).

The cellular automaton will be programmed in SuperPascal (Brinch Han-
sen 1994). The execution of k statements S, S, ..., Sk as parallel processes
is denoted

parallel S;|Sz|---|S; end
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Figure 1 A cellular automaton.
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Figure 2 Adjacent cells.

The parallel execution continues until every one of the k processes has ter-
minated.
The forall statement
forall i := 1 to k do S(4)
is equivalent to

parallel S(1)|S(2)|---|S(k) end

I assume that parallel processes communicate through synchronous chan-
nels only. The creation of a new channel c is denoted

open(c)
The input and output of a value x through a channel ¢ are denoted

receive(c,z) send(c,z)
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A cellular automaton is a set of parallel communicating cells. If you ig-
nore boundary cells and communication details, a two-dimensional automa-
ton is defined as follows:

foralli:= 1 ton do
forall j := 1 to n do
cell(i,j)

After initializing its own state, every interior cell goes through a fixed
number of state transitions before outputting its final state:

initialize own state;
for k := 1 to steps do
begin
exchange states with
adjacent cells;
update own state
end;
output own state

The challenge is to transform this fine-grained parallel model into an
efficient program for a multicomputer with distributed memory.

3 Initial States

Consider a cellular automaton with 36 interior cells and 24 boundary cells.
In a sequential computer the combined state of the automaton can be rep-
resented by an 8 x 8 matrix, called a grid (Fig. 3). For reasons that will be
explained later, the grid elements are indicated by 0’s and 1’s.

Figure 4 shows the initial values of the elements. The boundary elements
have fixed values u1, ug, ug and uyg. Every interior element has the same
initial value us.

In general, a grid u has n xn interior elements and 4n boundary elements:

const n = ..
type state = (...);
row = array [0..n+1] of state;
grid = array [0..n+1] of row;
var u: grid;

Since the possible states of every cell vary from one application to an-
other, I deliberately leave them unspecified. The grid dimension n and the
initial states w1, uo, us, ug and us are also application dependent.

On a sequential computer, the grid is initialized as follows:
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Figure 3 A square grid.
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Figure 4 Initial values.

fori:=0ton+ 1do
forj:=0ton+ 1do
ufi,j] := initial(i,j)

Algorithm 1 defines the initial value of the element element u[i, j]. The
values of the corner elements are arbitrary (and irrelevant).

4 Data Parallelism

For simulation of a cellular automaton, the ideal multicomputer architec-
ture is a square matrix of identical processor nodes (Fig. 5). Every node is
connected to its nearest neighbors (if any) by four communication channels.
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function initial(i, j: integer): state;
begin
if i = 0 then
initial := ul
else ifi = n + 1 then
initial := u2
else if j = n + 1 then
initial := u3
else if j = 0 then
initial := u4
else
initial := ub
end;

Algorithm 1

Figure 5 Processor matrix.

Figure 6 shows a grid with 36 interior elements divided into 9 subgrids.
You now have a 3 x 3 matrix of nodes and a 3 x 3 matrix of subgrids. The two
matrices define a one-to-one correspondence between subgrids and nodes. 1
will assign each subgrid to the corresponding node and let the nodes update
the subgrids simultaneously. This form of distributed processing is called
data parallelism.

Every processor holds a 4 x 4 subgrid with four interior elements and
eight boundary elements (Fig. 7). Every boundary element holds either an
interior element of a neighboring subgrid or a boundary element of the entire
grid. (I will say more about this later.)
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Figure 7 A subgrid.

5 Processor Nodes

With this background, I am ready to program a cellular automaton that runs
on a q X q processor matriz. The nodes follow the same script (Algorithm 2).

A node is identified by its row and column numbers (g;, g;) in the pro-
cessor matrix, where

1<¢g <qgand1<gq; <gq

Four communication channels, labeled up, down, left, and right, connect
a node to its nearest neighbors (if any).

Every node holds a subgrid with m x m interior elements and 4m bound-
ary elements (Fig. 7):

const m = ..

type
subrow = array [0..m+1] of state;
subgrid = array [0..m+1] of subrow;
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procedure node(qi, qj, steps: integer;
up, down, left, right: channel);
var u: subgrid; k: integer;
begin
newgrid(qi, qj, u);
for k := 1 to steps do
relax(qi, qj, up, down,
left, right, u);
output(qi, qj, right, left, u)
end;

Algorithm 2

The grid dimension n is a multiple of the subgrid dimension m:
n=msxgq

After initializing its subgrid, a node updates the subgrid a fixed num-
ber of times before outputting the final values. In numerical analysis, grid
iteration is known as relazation.

Node (gi, g;) holds the following subset

u[io..io +m+1, jo.-50 +m+ 1]
of the complete grid u[0..n + 1, 0..n + 1], where
io = (¢; — 1)m and jo = (¢; — 1)m

The initialization of a subgrid is straightforward (Algorithm 3).

6 Parallel Relaxation

In each time step, every node updates its own subgrid. The next value of
an interior element is a function of its current value u. and the values wu,,
us, Ue and wu,, of the four adjacent elements (Fig. 2). Every application of
a cellular automaton requires a different set of state tramsitions. In some
applications, probabilistic state transitions require the use of a random num-
ber generator that updates a global seed variable. Since functions cannot
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procedure newgrid(qi, qj: integer;
var u: subgrid);
var i, i0, j, jO: integer;
begin
i0 := (qi — 1)xm;
jO :== (qj — 1)*m;
fori:=0tom+ 1do
forj:=0tom + 1 do
ufi,j] := initial(i0-+, jO+j)
end;

Algorithm 3

have side-effects in SuperPascal, the nezt state of a cell u[i, j] is defined by
a procedure (Algorithm 4).

Parallel relaxation is not quite as easy as it sounds. When a node updates
row number 1 of its subgrid, it needs access to row number m of the subgrid
of its northern neighbor (Fig. 6). To relax its subgrid, a node must share a
single row or column with each of its four neighbors.

The solution to this problem is to let two neighboring grids overlap by
one row or column vector. Before a node updates its interior elements, it
exchanges a pair of vectors with each of the adjacent nodes. The overlapping
vectors are kept in the boundary elements of the subgrids (Fig. 7). If a neigh-
boring node does not exist, a local boundary vector holds the corresponding
boundary elements of the entire grid (Figs. 4 and 6).

The northern neighbor of a node outputs row number m of its subgrid
to the node, which inputs it in row number 0 of its own subgrid (Fig. 7). In
return, the node outputs its row number 1 to its northern neighbor, which
inputs it in row number m + 1 of its subgrid. Similarly, a node exchanges
rows with its southern neighbor, and columns with its eastern and western
neighbors (Fig. 5).

The shared elements raise the familiar concern about time-dependent
errors in parallel programs. Race conditions are prevented by a rule of mutual
exclusion: While a node updates an element, another node cannot access the
same element. This rule is enforced by an ingenious method (Barlow 1982).

Every grid element u[i, j] is assigned a parity

(i 4+ j) mod 2
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procedure nextstate(var u: subgrid;

i, j: integer);
{l<=i<=m,l<=j<=m}
begin u[i,j] := ... end;

Algorithm 4

procedure relax(qi, qj: integer;
up, down, left, right: channel,
var u: subgrid);
var b, i, j, k: integer;
begin
for b:=0to 1do
begin
exchange(qi, qj, 1 — b,
up, down, left, right, u);
fori:=1tomdo
begin
k:= (i + b) mod 2;
j=2-k
while j <= m — k do
begin
nextstate(u, i, j);
ji=j+2
end
end
end
end;

Algorithm 5
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which is either even (0) or odd (1) as shown in Figs. 3 and 6. To eliminate
tedious (and unnecessary) programming details, I assume that the subgrid
dimension m is even. This guarantees that every subgrid has the same parity
ordering of the elements (Figs. 6 and 7).

Parity ordering reveals a simple property of grids: The next values of
the even interior elements depend only on the current values of the odd
elements, and vice versa. This observation suggests a reliable method for
parallel relaxation.

In each relaxation step, the nodes scan their grids twice:

e First scan: The nodes exchange odd elements with their neighbors and
update all even interior elements simultaneously.

e Second scan: The nodes exchange even elements and update all odd
interior elements simultaneously.

The key point is this: In each scan, the simultaneous updating of local
elements depends only on shared elements with constant values! In the
terminology of parallel programming, the nodes are disjoint processes during
a scan.

The relazation procedure uses a local variable to update elements with
the same parity b after exchanging elements of the opposite parity 1 —b with
its neighbors (Algorithm 5).

7 Local Communication

The nodes communicate through synchronous channels with the following
properties:

1. Every channel connects exactly two nodes.
2. The communications on a channel take place one at a time.

3. A communication takes place when a node is ready to output a value
through a channel and another node is ready to input the value through
the same channel.

4. A channel can transmit a value in either direction between two nodes.

5. The four channels of a node can transmit values simultaneously.
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These requirements are satisfied by transputer nodes programmed in occam
(Cok 1991).

The identical behavior of the nodes poses a subtle problem. Suppose the
nodes simultaneously attempt to input from their northern neighbors. In
that case, the nodes will deadlock, since none of them are ready to output
through the corresponding channels. There are several solutions to this
problem. I use a method that works well for transputers.

Before the nodes scan elements of the same parity, they communicate
with their neighbors in two phases (Fig. 8).

up up
left— — right left<— (¢ right
down down

Figure 8 Communication phases.

In each phase, every node communicates simultaneously on its four chan-
nels as shown below. Phases 1 and 2 correspond to the left and right halves
of Fig. 8.

Channel Phase1l Phase 2

up input output
down output  input
left input output
right output input

Since every input operation on a channel is matched by a simultaneous
output operation on the same channel, this protocol is deadlock free. It
is also very efficient, since every node communicates simultaneously with its
four neighbors.

Algorithm 6 defines the exchange of elements of parity b between a node
and its four neighbors.

Phase 1is defined by Algorithm 7. The if statements prevent boundary
nodes from communicating with nonexisting neighbors (Fig. 5).
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procedure exchange(qi, qj, b: integer;
up, down, left, right: channel;
var u: subgrid);
begin
phasel(qdi, qj, b,
up, down, left, right, u);
phase2(qi, qj, b,
up, down, left, right, u)
end;

Algorithm 6

Phase 2 is similar (Algorithm 8).

I have used this protocol on a Computing Surface with transputer nodes.
Since transputer links can communicate in both directions simultaneously,
the two communication phases run in parallel. So every transputer inputs
and outputs simultaneously through all four links!

If the available processors cannot communicate simultaneously with their
neighbors, a sequential protocol must be used (Dijkstra 1982). This is also
true if the overhead of parallelism and communication is substantial. How-
ever, the replacement of one protocol by another should only change Algo-
rithms 6-8 and leave the rest of the program unchanged.

8 Global Output

At the end of a simulation, the nodes output their final values to a master
processor that assembles a complete grid. The boundary channels of the
processor matrix are not used for grid relaxation (Fig. 5). I use the horizontal
boundary channels to connect the nodes and the master M into a pipeline
for global output (Fig. 9).

The boundary elements of the entire grid have known fixed values (Fig. 4).
These elements are needed only during relaxation. The final output is an
n X n matrix of interior elements only. Every element defines the final state
of a single cell.

So I redefine the full grid, omitting the boundary elements:
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procedure phasel(qi, qj, b: integer;
up, down, left, right: channel;
var u: subgrid);
var k, last: integer;
begin
k:=2—b;
last := m — b;
while k <= last do
begin
{l<=k<=m}
[sic] parallel
if qi > 1 then
receive(up, u[0,k])]
if qi < q then
send(down, u[m,k])]
if qj > 1 then
receive(left, ufk,0])]
if gj < q then
send (right, u[k,m])
end;
k:=k+ 2
end
end;

)

Algorithm 7

type
row = array [l..n] of state;
grid = array [1..n] of row;

The master inputs the final grid row by row, one element at a time
(Algorithm 9).

The nodes use a common procedure to output interior elements in row
order (Algorithm 10). Every row of elements is distributed through a row of
nodes (Figs. 5 and 6). For each of its subrows, node (g;, g;) outputs the m
interior elements, and copies the remaining (¢ — ¢;)m elements of the same
row from its eastern neighbor. This completes the output of the rows of
elements, which are distributed through row ¢; of the processor matrix. The
node then copies the remaining (¢ — ¢;)m complete rows of n elements each.

A simple procedure is used to copy a fixed number of elements from
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procedure phase2(qi, qj, b: integer;
up, down, left, right: channel;
var u: subgrid);
var k, last: integer;
begin
k:=b+1;
last :=m + b — 1;
while k <= last do
begin
{l<=k<=m}
[sic] parallel
if qi > 1 then
send(up, u[LK])
if qi < q then
receive(down, u[fm-+1,k])|
if qj > 1 then
send(left, ufk,1])|
if gj < q then
receive(right, ufk,m+1])
end;
k:=k+ 2
end
end;

i

Algorithm 8

one channel to another (Algorithm 11). In my program for the Comput-
ing Surface, I extended the copy procedure with parallel input/output. I
also modified Algorithms 2 and 9 slightly to enable the program to output
intermediate grids at fixed intervals.

9 Processor Network

Figure 10 illustrates the network that ties the processors together. The
network consists of a horizontal channel matrix A and a vertical channel
matrix v.

The following examples illustrate the abbreviations used:
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his
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2,1

2,2

2,3

ha 3

h3.1

h32

3,1

3,2
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Figure 9 Output pipeline.

procedure master(right: channel;
var u: grid);
var i, j: integer;

begin

fori:=1tondo

for j:=1tondo

end;

Algorithm 12 defines parallel simulation of a cellular automaton that
computes a relaxed grid u. Execution of the parallel statement activates (1)
the master, (2) the first column of nodes, and (3) the rest of the nodes.

This completes the development of the generic program.
demonstrate how easily the program can be adapted to different applica-

tions of cellular automata.

receive(right, ui,j])

Algorithm 9

M
3,2
V2,2

h31

master

node(3,2)

channel v[2,2]
channel h[3,1]

I will now
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procedure output(qi, qj: integer;
inp, out: channel; var u: subgrid);
var i, j: integer;
begin
fori:=1tomdo
begin
for j:=1tom do
send (out, uli,j]);
copy((q — gj)m, inp, out)
end;
copy((q — qi)*mxn, inp, out)
end;

Algorithm 10

10 Example: Forest Fire

A typical application of a cellular automaton is simulation of a forest fire.
Every cell represents a tree that is either alive, burning, or dead. In each
time-step, the next state of every tree is defined by probabilistic rules similar
to the ones proposed by Bak (1990):

1. If a live tree is next to a burning tree, it burns; otherwise, it catches
fire with probability py.

2. A burning tree dies.
3. A dead tree has probability p, of being replaced by a live tree.

Parallel simulation of a forest fire requires only minor changes of the
generic program:

1. The possible states are:
type state = (alive, burning, dead);
2. The initial states may, for example, be:
u] = us = ug = ug = dead, us = alive
3. Algorithm 4.1 defines state transitions.

4. A random number generator is added.
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procedure copy(no: integer;
inp, out: channel);
var k: integer; uk: state;
begin
for k := 1 to no do
begin
receive(inp, uk);
send(out, uk)
end
end;

Algorithm 11

V0,1 0,2 0,3
ho3 hia hi2 hig3
M 1,1 1,2 1,3
v1,1 V1,2 V13
hig3 ha1 ha2 ha 3
2.1 2.2 2.3
V2,1 V2,2 V2.3
ha3 h3,1 h32 h3,3
3,1 3,2 3,3
V3,1 V3,2 V3,3

Figure 10 Processor network.
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procedure simulate(
steps: integer; var u: grid);
type
line = array [1..q] of channel;
matrix = array [0..q] of line;
var h, v: matrix; i, j: integer;
begin
open(h[0,q]);
fori:=1toqdo
for j:=1to qdo
open(hli,j);
fori:=0toqdo
for j:=1to qdo
open(v[i,j]);
parallel
master(h[0,q], u)]
forall j := 1 to q do
node(j, 1, steps,
V[j_171]7 V[L”»
hfj—1.q], [j.1))
foralli:= 1 to q do
forall j := 2 to q do
node(i, j, steps,
V[i_]-vj]v V[i,j},
h[ivj_1}7 h[lh]])
end
end;

Algorithm 12
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procedure nextstate(var u: subgrid,;
i, j: integer);

{l<=i<=m,l<=j<=m}

const pa = 0.3; pb = 0.01;

var x: real;

begin
case u[i,j] of
alive:
if
(u[i—1,j] = burning) or
(u[i4+1,j] = burning) or
(u[i,j+1] = burning) or
(ufi,j—1] = burning)
then uli,j] := burning
else
begin
random(x);
if x <= pb then
u[i,j] := burning
end;
burning:
uli,j] := dead;
dead:
begin
random(x);
if x <= pa then
ufi,j] := alive
end
end
end;

Algorithm 4.1
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11 Example: Laplace’s Equation

A cellular automaton can also solve Laplace’s equation for equilibrium tem-
peratures in a square region with fixed temperatures at the boundaries. Ev-
ery cell represents the temperature at a single point in the region. In each
time-step, the next temperature of every cell is defined by a simple deter-
ministic rule.

Parallel simulation of heat flow requires the following changes of the
generic program:

1. The states are temperatures represented by reals.

2. A possible choice of initial temperatures is:

up = 0
ug = 100
uz = 100
u = 0
us = 50

3. Algorithm 4.2 defines the next temperature of an interior cell u[z, j].
In steady-state, the temperature of every interior cell is the average of
the neighboring temperatures:

Ue = (Up, + Us + Ue + Uy) /4.0

This is the discrete form of Laplace’s equation. The residual res, is a
measure of how close a temperature is to satisfying this equation. The
correction of a temperature u, is proportional to its residual.

4. A relazation factor fop:, is added: For a large square grid relaxed in
parity order, the relaxation factor

fopt =2 —27/n

ensures the fastest possible convergence towards stationary tempera-
tures. In numerical analysis, this method is called successive overrelax-
ation with parity ordering. The method requires n relaxation steps to
achieve 3-figure accuracy of the final temperatures (Young 1954; Press
1989).
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procedure nextstate(var u: subgrid,;
i, j: integer);
{l<=i<=m,l<=j<=m}
var res: real;
begin
res 1=
(u[i—=1,j] + u[i+1,j] +
- u[i,j];
ufi,j] := uli,j] + fopt*res
end;

Algorithm 4.2

The complete algorithm for parallel simulation of steady-state heat flow is
listed in the Appendix. The corresponding sequential program is explained
in Brinch Hansen (1992b). Numerical solution of Laplace’s equation on
multicomputers is also discussed in Barlow (1982), Evans (1984), Pritchard
(1987), Saltz (1987), and Fox (1988).

12 Complexity

In each time-step, every node exchanges overlapping elements with its neigh-
bors in O(m) time, and updates its own subgrid in O(m?) time. The final
output takes O(n?) time. The parallel run time required to relax an n x n
grid n times on p processors is

T(n,p) = n(am?® + O(m)) + O(n?)
where a is a system-dependent constant of relaxation and
n=myp 1)
The complexity of parallel simulation can be rewritten as follows:
T(n,p) = n*(an/p+O(1) + O(1//p))

For 1 < p < n, the communication times are insignificant compared to
the relaxation time, and you have approximately
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T(n,p) ~ an®/p forn > p (2)

If the same simulation runs on a single processor, the sequential run time
is obtained by setting p = 1 in (2):

T(n,1) ~ an® forn > 1 (3)
The processor efficiency of the parallel program is

T(n,1) (1)
p T(n,p)
The numerator is proportional to the number of processor cycles used in a
sequential simulation. The denominator is a measure of the total number of
cycles used by p processors performing the same computation in parallel.
By (2), (3) and (4) you find that the parallel efficiency is close to one,
when the problem size n is large compared to the machine size p:

E(?’L,p) =

E(n,p) =~ 1 forn > p

Since this analysis ignores the (insignificant) communication times, it cannot
predict how close to one the efficiency is.

In theory, the efficiency can be computed from (4) by measuring the
sequential and parallel run times for the same value of n. Unfortunately,
this is not always feasible. When 36 nodes relax a 1500 x 1500 grid of 64-bit
reals, every node holds a subgrid of 250 x 250 x 8 = 0.5 Mbyte. However,
on a single processor, the full grid occupies 18 Mbytes.

A more realistic approach is to make the O(n?) grid proportional to the
machine size p. Then every node has an O(m?) subgrid of constant size
independent of the number of nodes. And the nodes always perform the
same amount of computation per time-step.

When a scaled simulation runs on a single processor, the run time is
approximately

T(m,1) ~ am® form > 1 (5)

since p =1 and n = m.
From (1), (3) and (5) you obtain

T(n,1) ~ p*? T(m,1) form > 1 (6)
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The computational formula you need follows from (4) and (6):

VP T(m,1)
E(n,p) ~ Y——"—= form > 1 7
(m.) T(n,p) ™
This formula enables you to compute the efficiency of a parallel simulation

by running a scaled-down version of the simulation on a single node.

13 Performance

I reprogrammed the model program in occam?2 and ran it on a Computing
Surface with T800 transputers configured as a square matrix with a master
node (Meiko 1987; Inmos 1988; McDonald 1991). The program was modified
to solve Laplace’s equation as explained in Sec. 11. The complete program
is found in the Appendix.

Table 1 shows measured (and predicted) run times 7'(n, p) in seconds for
n relaxations of an n X n grid on p processors. In every run, the subgrid
dimension m = 250.

Table 1 Run times.

p___n_ Thp() B
I 250 278 (281) 1.00
4 500 574 (563) 0.97
9 750 863  (844) 0.97
)
)
)

16 1000 1157 (1125) 0.96
25 1250 1462 (1406) 0.95
36 1500 1750 (1688) 0.95

The predicted run times shown in parentheses are defined by (2) using
a =18 us

The processor efficiency F(n,p) was computed from (7) using the mea-
sured run times.

14 Final Remarks

I have developed a generic program for parallel execution of cellular au-
tomata on a multicomputer with a square matrix of processor nodes. I have
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adapted the generic program for simulation of a forest fire and numerical
solution of Laplace’s equation for stationary heat flow. On a Computing
Surface with 36 transputers the program performs 1500 relaxations of a
1500 x 1500 grid of 64-bit reals in 29 minutes with an efficiency of 0.95.

15 Appendix: Complete Algorithm

The complete algorithm for parallel solution of Laplace’s equation is com-
posed of Algorithms 1-12.

const q = 6; m = 250 { even };
n = 1500 { mxq };

type
row = array [1..n] of real;
grid = array [1..n] of row;

procedure laplace(var u: grid;
ul, u2, u3, u4, ub: real;
steps: integer);

type
subrow = array [0..m+1] of real;
subgrid = array [0..m+1] of subrow;
channel = x(real);

procedure node(qi, qj, steps: integer;
up, down, left, right: channel);

const pi = 3.14159265358979;

var u: subgrid; k: integer; fopt: real;

procedure copy(no: integer;
inp, out: channel);
var k: integer; uk: real;
begin
for k := 1 to no do
begin
receive(inp, uk);
send(out, uk)
end
end;
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procedure output(qi, qj: integer;
inp, out: channel; var u: subgrid);
var i, j: integer;
begin
fori:=1tomdo
begin
for j:=1tomdo
send(out, uli,j]);
copy((q — qj)*m, inp, out)
end;
copy((q — qi)*msn, inp, out)
end;

procedure phasel(qi, qj, b: integer;
up, down, left, right: channel;
var u: subgrid);

var k, last: integer;

begin
k:=2 — b;
last := m — b;
while k <= last do
begin

{l<=k<=m}
[sic] parallel
if gi > 1 then
receive(up, u[0,k])|
if qi < q then
send(down, u[m,k])]
if ¢j > 1 then
receive(left, ufk,0])]
if qj < q then
send(right, u[k,m])
end;
k:=k+2
end
end;
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procedure phase2(qi, qj, b: integer;
up, down, left, right: channel,
var w: subgrid);
var k, last: integer;
begin
k:=b+ 1;
last :=m + b — 1;
while k <= last do
begin
{l<=k<=m}
[sic] parallel
if qi > 1 then
send(up, u[1,k])|
if qi < q then
receive(down, u[m+1,k])|
if gj > 1 then
send(left, u[k,1])]
if qj < q then
receive(right, u[k,m+1])
end;
k:=k+2
end
end;
procedure exchange(qi, qj, b: integer;
up, down, left, right: channel,
var w: subgrid);
begin
phasel(qi, qj, b,
up, down, left, right, u);
phase2(qi, qj, b,
up, down, left, right, u)
end;

function initial(i, j: integer): real;
begin
ifi = 0 then
initial := ul
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else ifi = n + 1 then
initial := u2

else if j = n + 1 then
initial := u3

else if j = 0 then
initial := u4

else
initial := ub

end;

procedure nextstate(var u: subgrid,;
i, j: integer);
{l<=i<=m,l<=j<=m}
var res: real;
begin
res 1=
(u[i—1,j] + ufi+1,j] +
ufi,j+1] + uli,j—1])/4.0
— ufi,jf;
ufi,j] := uli,j] + foptsres
end;
procedure newgrid(qi, qj: integer;
var w: subgrid);
var i, i0, j, jO: integer;
begin
i0 := (qi — 1)*m;
jO = (qj — 1)*my;
fori:=0tom+ 1do
for j:=0tom + 1 do
ufi,j] := initial(i0+i, jO+j)
end;
procedure relax(qi, qj: integer;
up, down, left, right: channel;
var u: subgrid);
var b, i, j, k: integer;
begin
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forb:=0to1do
begin
exchange(qi, qj, 1 — b,
up, down, left, right, u);
fori:=1tomdo

begin
k:= (i + b) mod 2;
j=2-=Kk;
while j <=m — k do
begin
nextstate(u, i, j);
j=j+2
end
end
end
end;
begin

fopt := 2.0 — 2.0x%pi/n;
newgrid(qi, qj, u);
for k := 1 to steps do
relax(qi, qj, up, down,
left, right, u);
output(qi, qj, right, left, u)
end { node };

procedure master(right: channel;

var u: grid);
var i, j: integer;
begin

fori:=1tondo

for j:=1tondo
receive(right, ufi,j])

end;
procedure simulate(

steps: integer; var u: grid);
type
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line = array [1..q] of channel;
matrix = array [0..q] of line;
var h, v: matrix; i, j: integer;
begin
open(h[0,q]);
fori:=1toqdo
for j:=1to qdo
open(hli,j):
fori:=0to qdo
for j:=1toqdo
open(v[i,j]);
parallel
master(h[0,q], u)]
forall j := 1 to q do
node(j, 1, steps,
vli—1,1, v[j1],
hfj—1,q, hfj.1)]
foralli:=1to q do
forall j :== 2 to q do
node(i, j, steps,
vli—L], viil,
h[i,j—1], hi,j])
end
end;

begin
simulate(steps, u)
end { laplace };
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