

THE LINEAR SEARCH REDISCOVERED

In a recent paper Dijkstra and Feijen (1989) derive an unusual program for
linear searching. The authors ask their readers the following question: “Did
you know this program for The Bounded Linear Search? We did not.”

I did indeed. I derived it at Caltech around 1973 and published it in a
textbook (Brinch Hansen 1985). I found it by trying to write an abstract
program for searching an ordered array without initially specifying a partic-
ular search method!

I will restate the problem which I solved in Pascal using different variable
names. Suppose that n integers are stored in non-decreasing order in the
array elements A[1], A[2], . . . A[n]. Find an element A[i] (if it exists) which
has a given value x.

My starting point was the following abstract program:

consider all elements;
while more than one element do

begin
partition interval;
choose subinterval

end;
examine final element

Initially the algorithm considers all elements in the interval from 1 to n.
The interval is gradually reduced until there is only one element left. The
final element is then examined to determine if it holds a solution.

The invariant of the loop can be stated as follows: If the problem has
any solutions at least one of them can be found in the current interval from
i to m, where

1 ≤ i ≤ m ≤ n

We can now refine some of the program pieces:

P. Brinch Hansen, The linear search rediscovered. Structured Programming 11, (1990),
53–55. Copyright c© 1990, Springer-Verlag New York, Inc.

1

2 PER BRINCH HANSEN

consider all elements:
i := 1; m := n

more than one element:
i < m

examine final element:
found := A[i] = x

If the interval from i to m holds more than one element, we use a particular
search algorithm to find an element k which divides the interval into a left
interval from i to k and a right interval from k + 1 to m, where

1 ≤ i ≤ k < m ≤ n

In choosing one of the subintervals, there are three cases to consider:

1. If A[k] < x there is no solution in the left interval.
2. If A[k] = x there is a solution in the left interval.
3. If A[k] > x there is no solution in the right interval.

We can now define yet another program piece:

choose subinterval:
if A[k] ≥ x

then {choose left interval} m := k
else {choose right interval} i := k + 1

The only program piece that depends on a particular search method is the
one which partitions the current interval.

If we cut the current interval in half we have a binary search:

i := 1; m := n;
while i < m do

begin
k := (i + m) div 2;
if A[k] ≥ x then m := k
else i := k + 1

end;
found := A[i] = x

If the left interval consists of a single element onIy, we have a linear
search:

THE LINEAR SEARCH REDISCOVERED 3

i:= 1; m := n;
while i < m do

begin
k:= i;
if A[k] ≥ x then m := k
else i := k + 1

end;
found := A[i] = x

By eliminating the superfluous variable k, you get the following (unexpected)
solution:

i := 1; m := n;
while i < m do

if A[i] ≥ x then m := i
else i := i + 1

If you replace the condition A[i] ≥ x by A[i] = x, the algorithm finds the
first element (if any) which equals x in an unordered array. Finally, if you
write this version of the algorithm using parallel assignment and guarded
commands, you obtain the algorithm which I published (without any expla-
nation) in Brinch Hansen (1985):

i, m := 1, n;
do i < m →

if A[i] = x → m := i []
not (A[i] = x) → i := i + 1

fi
od
found := A[i] = x

References

Dijkstra, E. W, and Feijen, W. H. J. 1989. The Linear Search Revisited. Structured
Programming 10, 1, 5–8.

Brinch Hansen, P. 1985. On Pascal Compilers. Prentice-Hall, Englewood Cliffs, NJ, 283.

