
       

JOYCE—A PROGRAMMING

LANGUAGE FOR

DISTRIBUTED SYSTEMS

PER BRINCH HANSEN

(1987)

This paper describes a secure programming language called Joyce based on

CSP and Pascal. Joyce permits unbounded (recursive) activation of communi-

cating agents. The agents exchange messages through synchronous channels.

A channel can transfer messages of different types between two or more agents.

A compiler can check message types and ensure that agents use disjoint sets

of variables only. The use of Joyce is illustrated by a variety of examples.

1 INTRODUCTION

Two years after the invention of the monitor concept (Brinch Hansen 1973;
Hoare 1974), Concurrent Pascal had been developed (Brinch Hansen 1975)
and used for operating system design (Brinch Hansen 1976). Within ten
years, half a dozen production-quality languages were monitor-based, among
them Modula (Wirth 1977), Pascal-Plus (Welsh 1979), Mesa (Lampson 1980)
and Concurrent Euclid (Holt 1982).

Eight years after the CSP proposal (Hoare 1978), several CSP-based lan-
guages have been developed: these include CSP80 (Jazayeri 1980), RBCSP
(Roper 1981), ECSP (Baiardi 1984), Planet (Crookes 1984) and the low-
level language occam (Inmos 1984). But no experience has been reported
on the use of these languages for non-trivial system implementation. Al-
though CSP has been highly successful as a notation for theoretical work
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(Hoare 1985), it has probably been too far removed from the requirements
of a secure programming language.

This paper describes a secure programming language called Joyce for the
design and implementation of distributed systems. Joyce is based on CSP
and Pascal (Wirth 1971).

A Joyce program consists of nested procedures which define communicat-
ing agents. Joyce permits unbounded (recursive) activation of agents. The
execution of a program activates an initial agent. Agents may dynamically
activate subagents which run concurrently with their creators. The variables
of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through channels.
Every channel has an alphabet—a fixed set of symbols that can be trans-
mitted through the channel. A symbol has a name and may carry a message
of a fixed type.

Two agents match when one of them is ready to output a symbol to a
channel and the other is ready to input the same symbol from the same chan-
nel. When this happens, a communication takes place in which a message
from the sending agent is assigned to a variable of the receiving agent.

The communications on a channel take place one at a time. A channel
can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two agents
are ready to communicate on the same channel, it may be possible to match
them in several different ways. The channel arbitrarily selects two matching
agents at a time and lets them communicate.

A polling statement enables an agent to examine one or more channels
until it finds a matching agent. Both sending and receiving agents may be
polled.

Agents create channels dynamically and access them through local port
variables. When an agent creates a channel, a channel pointer is assigned to
a port variable. The agent may pass the pointer as a parameter to subagents.

When an agent reaches the end of its defining procedure, it waits until
all its subagents have terminated before terminating itself. At this point,
the local variables and any channels created by the agent cease to exist.

This paper defines the concepts of Joyce and illustrates the use of the
language to implement a variety of well-known programming concepts and
algorithms.



       

JOYCE—A PROGRAMMING LANGUAGE 3

2 LANGUAGE CONCEPTS

Joyce is based on a minimal Pascal subset: type integer, boolean, char and
real; enumerated, array and record types; constants, variables and expres-
sions; assignment, if, while, compound and empty statements.

This subset is extended with concurrent programming concepts called
agent procedures, port types and channels, agent, port, input/output and
polling statements.

The Joyce grammar is defined in extended BNF notation: [E] denotes
an E sentence (or none). {E} denotes a finite (possibly empty) sequence of
E sentences. Tokens are enclosed in quotation marks, e.g. “begin”.

This paper concentrates on the concurrent aspects of Joyce.

Port types

TypeDefinition = TypeName “=” NewType “;” .
NewType = PascalType | PortType .
PortType = “[” Alphabet “]” .
Alphabet = SymbolClass { “,” SymbolClass } .
SymbolClass = SymbolName [ “(” MessageType “)” ] .
MessageType = TypeName .

A Joyce program defines abstract concurrent machines called agents. The
agents communicate by means of values called symbols transmitted through
entities called channels. The set of possible symbols that can be transmitted
through a channel is called its alphabet.

Agents create channels dynamically and access them through variables
known as port variables. The types of these variables are called port types.

A type definition

T = [s1(T1), s2(T2), . . . , sn(Tn)];

defines a port type named T . The port value nil T is of type T and denotes a
non-existing channel. All other port values of type T denote distinct channels
with the given alphabet. The port values (also known as channel pointers)
are unordered.

The alphabet is the union of a fixed number of disjoint symbol classes
named s1, s2, . . . , sn.

A symbol class si(Ti) consists of every possible value of type Ti prefixed
with the name si. The Ti values are called messages.
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A symbol class sj consists of a single symbol named sj without a message.
The symbol is called a signal.

The symbol names s1, s2, . . . , sn must be distinct, and T1, T2, . . . , Tn must
be names of known types. (Every type has a name and is said to be known
within its scope.) The message types cannot be (or include) port types.

Examples:

1. A port type named stream with two symbol classes named int and eos.
Every int symbol includes a message of type integer. The eos symbol
is a signal:

stream = [int(integer), eos];

2. A port type named PV with two signals P and V :

PV = [P, V];

Note. Symbols of the same alphabet must have distinct names. Symbols
of different alphabets may have the same names. Different symbols of the
same alphabet may carry messages of the same type.

Port variables

PortAccess = VariableAccess .

A variable v : T of a port type T holds a port value. If the value of v is
nil T, a port access v denotes a non-existing channel; otherwise, it denotes a
channel with the alphabet given by T . (The channel itself is not a variable,
but a communication device shared by agents.)

Examples:

1. Access a port variable named inp:

inp

2. Access the ith element of an array of port variables named ring:

ring[i]
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Port statements

Statement = PascalStatement | PortStatement |
InputOutputStatement | PollingStatement |
AgentStatement .

PortStatement = “+” PortAccess .

The creation of a new channel is called the activation of the channel. A
port statement +c denotes activation of a new channel. The variable access
c must be of a known port type T .

When an agent executes the port statement, a new channel with the
alphabet given by T is created and a pointer to the channel is assigned to
the port variable c. The agent is called the creator of the channel. The
channel itself is known as an internal channel of the agent. The channel
ceases to exist when its creator terminates.

Examples:

1. Create a new channel and assign the pointer to the port variable inp:

+inp

2. Create a new channel and assign the pointer to the port variable ring[i]:

+ring[i]

Input/output statements

InputOutputCommand = OutputCommand | InputCommand .
OutputCommand = PortAccess “!” OutputSymbol .
OutputSymbol = SymbolName [ “(” OutputExpression “)” ] .
OutputExpression = Expression .
InputCommand = PortAccess “?” InputSymbol .
InputSymbol = SymbolName [ “(” InputVariable “)” ] .
InputVariable = VariableAccess .
InputOutputStatement = InputOutputCommand .

A communication is the transfer of a symbol from one agent to another
through a channel. The sending agent is said to output the symbol, and the
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receiving agent is said to input the symbol. The agents access the channel
through local port variables.

Consider an agent p which accesses a channel through a port variable
b, and another agent q which accesses the same channel through a different
port variable c. The port variables must be of the same type:

T = [s1(T1), s2(T2), . . . , sn(Tn)];

An output command b!si(ei) denotes output of a symbol si(ei) through the
channel denoted by the port variable b. si must be the name of one of the
symbol classes of T , and the expression ei must be of the corresponding
message type Ti.

An input command c?si(vi) denotes input of a symbol si(vi) through the
channel denoted by the port variable c. si must be the name of one of the
symbol classes of T , and the variable access vi must be of the corresponding
message type Ti.

When an agent p is ready to output the symbol si on a channel, and
another agent q is ready to input the same symbol from the same channel,
the two agents are said to match and a communication between them is said
to be feasible. If and when this happens, the two agents execute the output
and input commands simultaneously. The combined effect is defined by the
following sequence of actions:

1. p obtains a value by evaluating the output expression ei.

2. q assigns the value to its input variable vi.

(If the symbol si is a signal, steps 1 and 2 denote empty actions.)
After a communication, the agents proceed concurrently.
When an agent reaches an input/output command which denotes a com-

munication that is not feasible, the behavior of the agent depends on whether
the command is used as an input/output statement or as a polling command
(defined in the next section).

The effect of an input/output statement is to delay an agent until the
communication denoted by the statement has taken place.

The communications on a channel take place one at a time. A channel
can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two agents
are ready to communicate on the same channel, it may be possible to match
them in several different ways. The channel arbitrarily selects two matching
agents at a time and lets them communicate.
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Examples:

1. Use the port variable out to output an int symbol with the message
x+ 1:

out!int(x + 1)

2. Use the port variable inp to input an int symbol and assign the message
to y:

inp?int(y)

3. Use the port variable out to output an eos signal:

out!eos

4. Use the port variable inp to input an eos signal:

inp?eos

5. Use the port variable ring[i] to output a token signal:

ring[i]!token

Polling statements

PollingStatement =
“poll” GuardedStatementList “end” .

GuardedStatementList =
GuardedStatement { “|” GuardedStatement } .

GuardedStatement = Guard “−>” StatementList .
Guard = PollingCommand [ “&” PollingExpression ] .
PollingCommand = InputOutputCommand .
PollingExpression = BooleanExpression .

A polling statement



      

8 PER BRINCH HANSEN

poll
C1 & B1 −> SL1 |
C2 & B2 −> SL2 |
· · ·

Cn & Bn −> SLn
end

denotes execution of exactly one of the guarded statements

Ci & Bi −> SLi

An agent executes a polling statement in two phases, known as the polling
and completion phases:

1. Polling: the agent examines the guards C1&B1, C2&B2, . . ., Cn&Bn
cyclically until finds one with a polling command Ci that denotes a
feasible communication and a polling expression Bi that denotes true
(or is omitted).

2. Completion: the agent executes the selected polling command Ci fol-
lowed by the corresponding statement list SLi.

While an agent is polling, it can be matched only by another agent that
is ready to execute an input/output statement. Two agents polling at the
same time do not match.

Example:

Use a port variable named user to either (1) input a P signal (provided an
integer x > 0) and decrement x, or (2) input a V signal and increment x:

poll
user?P & x > 0 −> x := x − 1 |
user?V −> x := x + 1

end

Note. Polling has no side-effects, but may cause program failure if the
expression evaluation causes a range error (or overflow).
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Agent statements

AgentStatement =
AgentName [ “(” ActualParameterList “)” ] .

ActualParameterList =
ActualParameter { “,” ActualParameter } .

ActualParameter = Expression .

An agent procedure P defines a class of agents. The creation and start
of an agent is called its activation. The activation of a P agent creates a new
instance of every variable defined in procedure P . These variable instances
are called the own variables of the new agent. When the agent refers to a
variable x in P , it refers to its own instance of x. The own variables of an
agent are inaccessible to other agents.

An agent is always activated by another agent (called its creator). The
new agent is called a subagent of its creator. After the creation, the subagent
and its creator run concurrently.

An agent statement

P (e1, e2, . . . , em)

denotes activation of a new agent. P must be the name of a known agent
procedure (defined in the next section). The actual parameter list must
contain an actual parameter ei for every formal parameter ai defined by P .
ei must be an expression of the same type as ai.

When an agent executes an agent statement, a subagent is created in
two steps:

1. The own variables of the subagent are created as follows:

(a) The formal parameters of P are created one at a time in the order
listed. Every formal parameter ai is assigned the value denoted
by the corresponding actual parameter ei.

(b) The variables defined in the procedure body of P are created with
unpredictable initial values.

2. The subagent is started.

A port operand used as an actual parameter denotes a channel which is
accessible to both the subagent and its creator. It is known as an external
channel of the subagent.



    

10 PER BRINCH HANSEN

An agent defined by a procedure P may activate P recursively. Every
activation creates a new P agent with its own variables.

Example:

Activate a semaphore agent with two actual parameters: the integer 1 and
a port value named user:

semaphore(1, user)

Agent procedures

AgentProcedure = “agent” AgentName ProcedureBlock “;” .
ProcedureBlock =

[ “(” FormalParameterList “)” ] “;” ProcedureBody .
FormalParameterList =

ParameterDefinition { “;” ParameterDefinition } .
ParameterDefinition =

VariableName { “,” VariableName } “:” TypeName .
ProcedureBody =

[ ConstantDefinitionPart ] [ TypeDefinitionPart ]
{ AgentProcedure } [ VariableDefinitionPart ]
CompoundStatement .

An agent procedure P defines a class of agents. Every formal parameter
is a local variable that is assigned the value of an expression when a P agent
is activated.

After its activation, a P agent executes the corresponding procedure
body in two steps:

1. The agent executes the compound statement of P .

2. The agent waits until all its subagents (if any) have terminated. At
this point, the own variables and internal channels of the agent cease
to exist, and the agent terminates.

Example: semaphore

An agent procedure that defines a semaphore which accepts P and V signals:
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agent semaphore(x: integer; user: PV);
begin

while true do
poll

user?P & x > 0 −> x := x − 1|
user?V −> x := x + 1

end
end;

Programs

Program =
[ ConstantDefinitionPart ][ TypeDefinitionPart ]
AgentProcedure .

A program defines an agent procedure P . The program is executed by
activating and executing a single P agent (the initial agent). The activation
of the initial agent is the result of executing an agent statement in another
program (an operating system). A program communicates with its operat-
ing system through the external channels of the initial agent (the system
channels).

3 PROGRAM EXAMPLES

The following examples illustrate the use of Joyce to implement stream pro-
cessing, functions, data representations, monitors and ring nets. The exam-
ples have been compiled and run on an IBM PC using a Joyce compiler and
interpreter written in Pascal.

Stream processing

First, we look at agents that input and output bounded data streams. Every
stream is a (possibly empty) sequence of integers ending with an eos signal:

type stream = [int(integer), eos];

Example: generate

An agent that generates an arithmetic progression a0, a1, . . . , an−1, where
ai = a+ i×b:

agent generate(out: stream;
a, b, n: integer);
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var i: integer;
begin

i := 0;
while i < n do

begin
out!int(a + i∗b); i := i + 1

end;
out!eos

end;

Example: copy

An agent that copies a stream:

agent copy(inp, out: stream);
var more: boolean; x: integer;
begin

more := true;
while more do

poll
inp?int(x) −> out!int(x)|
inp?eos −> more := false

end;
out!eos

end;

Example: merge

An agent that outputs an arbitrary interleaving of two input streams:

agent merge(inp1, inp2, out: stream);
var n, x: integer;
begin

n := 0;
while n < 2 do

poll
inp1?int(x) −> out!int(x)|
inp1?eos −> n := n + 1|
inp2?int(x) −> out!int(x)|
inp2?eos −> n := n + 1
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end;
out!eos

end;

A value input from one of the streams inp1 and inp2 is immediately output.
The agent terminates when both input streams have been exhausted (n =
2).

Example: suppress duplicates

An agent that outputs a stream derived from an ordered input stream by
suppressing duplicates:

agent suppress(inp, out: stream);
var more: boolean; x, y: integer;
begin

poll
inp?int(x) −> more := true|
inp?eos −> more := false

end;
while more do

poll
inp?int(y) −>

if x <> y then
begin out!int(x); x := y end|

inp?eos −> out!int(x); more := false
end;

out!eos
end;

Example: iterative buffer

A buffer implemented as a pipeline of 10 copy agents:

agent buffer(inp, out: stream);
const n = 9;
type net = array [1..n] of stream;
use copy;
var a: net; i: integer;
begin

+a[1]; copy(inp, a[1]); i := 2;
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while i <= n do
begin

+a[i]; copy(a[i−1], a[i]); i := i + 1
end;

copy(a[n], out)
end;

The buffer agent is a composite agent which activates an array of copy agents
and channels by iteration. The length n+1 of the iterative array is specified
by a constant n. During compilation, the use sentence is replaced by the
text of the copy agent.

This algorithm is an example of “information hiding”. A user agent
may regard the copy and buffer agents as different implementations of the
same mechanism: a copying agent with an input and an output channel.
The subagents and internal channels of the buffer agent are therefore made
invisible to its environment.

Example: recursive buffer

A recursive version of the previous buffer:

agent buffer(n: integer; inp, out: stream);
use copy;
var succ: stream;
begin

if n = 1 then copy(inp, out)
else

begin
+succ; copy(inp, succ);
buffer(n − 1, succ, out)

end
end;

The length n of the recursive array is specified when it is activated. If n = 1,
the buffer consists of a single copy agent only; otherwise, it consists of a copy
agent followed by a buffer of length n− 1.

The next two examples illustrate the use of a programming paradigm
known as a dynamic accumulator. This is a pipeline which uses an in-
put stream to compute another stream. The pipeline accumulates the new
stream while it is being computed and outputs it as a whole when it is com-
plete. Every agent (except the last one) in the pipeline holds one element of
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the new stream. The last agent is empty. Each time the pipeline has com-
puted another element, the last agent receives an element and extends the
pipeline with a new empty agent. Since the length of the computed stream
is not known a priori, the pipeline begins as a single empty agent. At the
end of the input stream, the pipeline outputs the elements of the computed
stream one at a time and terminates.

Example: recursive sorting

A dynamic accumulator that inputs a (possibly empty) stream and outputs
the elements in non-decreasing order:

agent sort(inp, out: stream);
var more: boolean; x, y: integer;

succ: stream;
begin

poll
inp?int(x) −> +succ;

sort(succ, out); more := true;|
inp?eos −> out!eos; more := false

end;
while more do

poll
inp?int(y) −>

if x > y then
begin succ!int(x); x := y end

else succ!int(y)|
inp?eos −> out!int(x);

succ!eos; more := false
end

end;

The sorting agents share a common output channel. Initially, an agent
is the last one in the chain and is empty. After receiving the first value from
its predecessor, the agent creates a successor and becomes non-empty. The
agent now inputs the rest of the stream from its predecessor and keeps the
smallest value x received so far. The rest it sends to its successor. When
the agent inputs an eos signal it terminates as follows: if it is empty, the
agent sends eos through the common channel; otherwise it outputs x on the
common channel and sends eos to its successor.
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As an example, while sorting the sequence

3, 1, 2, eos

the accumulator s starts as a single empty agent denoted by < φ > and is
extended by a new agent for every value input:

Initially: s =< φ >
After inputting 3: s =< 3 >,< φ >
After inputting 1: s =< 1 >,< 3 >,< φ >
After inputting 2: s =< 1 >,< 2 >,< 3 >,< φ >

The sorting accumulator may be tested by means of a pipeline with three
agents:

agent pipeline1;
use generate, sort, print;
var a, b: stream;
begin

+a; +b; generate(a, 10, −1, 10);
sort(a, b); print(b)

end;

The print agent accepts a stream and prints it.
The next pipeline merges two unordered streams, sorts the results, sup-

presses duplicates and prints the rest:

agent pipeline2;
use generate, merge, sort, suppress, print;
var a, b, c, d, e: stream;
begin

+a; +b; +c; +d; +e;
generate(a, 1, 1, 10);
generate(b, 10, −1, 10);
merge(a, b, c); sort(c, d);
suppress(d, e); print(e)

end;

Example: prime sieve

A dynamic accumulator that inputs a finite sequence of natural numbers 1,
2, 3, . . ., n and outputs those that are primes:
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agent sieve(inp, out: stream);
var more: boolean; x, y: integer;

succ: stream;
begin

poll
inp?int(x) −> +succ;

sieve(succ, out); more := true|
inp?eos −> out!eos; more := false

end;
while more do

poll
inp?int(y) −>

if y mod x <> 0 then succ!int(y)|
inp?eos −> out!int(x);

succ!eos; more := false
end;

end;

Initially, a sieve agent inputs a prime x from its predecessor and activates a
successor. The agent then skips all further input which is divisible by x and
sends the rest to its successor. At the end, the agent sends x through the
common channel and sends eos either to its successor (if any) or through the
output channel.

The sieve can be optimized somewhat by letting every agent output its
prime as soon as it has been input. The present form of the algorithm was
chosen to show that the sort and sieve agents are almost identical variants
of the same programming paradigm. (They differ in one statement only!)

Since 2 is the only even prime, we may as well feed the sieve with odd
numbers 3, 5, 7, . . . only. The following pipeline prints all primes between 3
and 9999:

agent primes;
use generate, sieve, print;
var a, b: stream;
begin

+a; +b; generate(a, 3, 2, 4999);
sieve(a, b); print(b)

end;



    

18 PER BRINCH HANSEN

Function evaluation

A function f(x) can be evaluated by activating an agent with two parameters
denoting the argument x and a channel. The agent evaluates f(x), outputs
the result on the channel and terminates.

A procedure can be implemented similarly.

Example: recursive Fibonacci

An agent that computes a Fibonacci number recursively by means of a tree
of subagents:

type func = [val(integer)];

agent fibonacci(f: func; x: integer);
var g, h: func; y, z: integer;
begin

if x <= 1 then f!val(x)
else

begin
+g; fibonacci(g, x − 1);
+h; fibonacci(h, x − 2);
g?val(y); h?val(z); f!val(y + z)

end
end;

Data representation

An agent can also implement a set of operations on a data representation.

Example: recursive set

Problem. Represent a set of integers as an agent with an input and an
output channel. Initially, the set is empty. The set agent accepts three
kinds of commands from a single user agent only:

1. Insert an integer n in the set:

inp!insert(n)

2. Return a boolean b indicating if n is in the set:
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inp!has(n); out?return(b)

3. Delete the set:

inp!delete

Solution.

type
setinp = [insert(integer), has(integer), delete];
setout = [return(boolean)];

agent intset(inp: setinp; out: setout);
type state = (empty, nonempty, deleted);
var s: state; x, y: integer; succ: setinp;
begin

s := empty;
while s = empty do

poll
inp?insert(x) −> +succ;

intset(succ, out); s := nonempty|
inp?has(x) −> out!return(false)|
inp?delete −> s := deleted

end;
while s = nonempty do

poll
inp?insert(y) −>

if x > y then
begin succ!insert(x); x := y end

else if x < y then succ!insert(y)|
inp?has(y) −>

if x >= y then out!return(x = y)
else succ!has(y)|

inp?delete −> succ!delete; s := deleted
end

end;

The set agent is very similar to the sort and sieve agents. It contains either
one member of the set or none. Initially, the agent is empty and answers false
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to all membership queries. After the first insertion, it activates an empty
successor to which it passes any command it cannot handle. To speed up
processing, the set is ordered. Many insertions can proceed simultaneously in
the pipeline. Insertion of an already existing member has no effect. A delete
signal propagates through all the set agents and makes them terminate.

Monitors

A monitor is a scheduling agent that enables two or more user agents to
share a resource. The user agents can invoke operations on the resource one
at a time only. A monitor may use boolean expressions to delay operations
until they are feasible.

Example: ring buffer

A monitor that implements a non-terminating ring buffer which can hold up
to ten messages:

agent buffer(inp, out: stream);
const n = 10;
type contents = array [1..n] of integer;
var head, tail, length: integer;

ring: contents;
begin

head := 1; tail := 1; length := 0;
while true do

poll
inp?int(ring[tail]) & length < n −>

tail := tail mod n + 1;
length := length + 1|

out!int(ring[head]) & length > 0 −>
head := head mod n + 1;
length := length − 1

end
end;

An empty buffer may input a message only. A full buffer may output only.
When the buffer contains at least one and at most nine values, it is ready
either to input or to output a message.
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Example: scheduled printer

A monitor that gives one user agent at a time exclusive access to a printer
during a sequence of write operations. The user agent must open the printer
before writing and close it afterwards:

type printsym = [open, write(char), close];

agent printer(user: printsym);
var more: boolean; x: char;
begin

while true do
begin

user?open; more := true;
while more do

poll
user?write(x) −> print(x)|
user?close −> more := false

end
end

end;

When the printer has received an open symbol from a user agent, it accepts
only a (possibly empty) sequence of write symbols followed by a close symbol.
This protocol prevents other agents from opening the printer and using it
simultaneously. (The details of printing are ignored.)

Ring nets

So far, we have only considered agents connected by acyclic nets of channels.
In the final example, the agents are connected by a cyclic net of channels.

Example: nim players

From a pile of 20 coins, three players take turns picking one, two or three
coins from the pile. The player forced to pick the last coin loses the game.

The game is simulated by three agents connected by a ring of three
channels. When the game begins, one of the agents receives all the coins:

agent nim;
use player;
var a, b, c: stream;
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begin
+a; +b; +c; player(20, a, b);
player(0, b, c); player(0, c, a);

end;

The players behave as follows:

agent player(pile: integer;
pred, succ: stream);

var more: boolean;
begin

if pile > 0 then succ!int(pile − 1);
more := true;
while more do

poll
pred?int(pile) −>

if pile > 1 then succ!int(pile − 1)
else { loser }

begin
succ!eos; pred?eos; more := false

end|
pred!eos −> succ!eos; more := false

end
end;

When an agent receives the pile from its predecessor, it reduces it and sends
the rest (if any) to its successor. (To simplify the algorithm slightly, an
agent always removes a single coin). The agent that picks the last coin
sends eos to its successor and waits until the signal has passed through the
other two agents and comes back from its predecessor. At that point, the
loser terminates. When a non-losing agent receives eos instead of a pile, it
passes the signal to its successor and terminates.

The dining philosophers problem (Hoare 1978) is another example of a
ring net. It is left as an exercise to the reader.

4 DESIGN ISSUES

The following motivates some of the design decisions of Joyce.
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Terminology and notation

In the literature, the word “process” often denotes a sequential process.
Since a composite agent is not sequential, I prefer to use another word for
communicating machines (namely, “agents”).

It was tempting to use the notation of CSP (Hoare 1978) or one of
the successors of Pascal, for example Modula-2 (Wirth 1982). However,
in spite of its limitations, Pascal has a readable notation which is familiar to
everyone. Chosing a pure Pascal subset has enabled me to concentrate on
the concurrent aspects of Joyce.

Indirect naming

One of the major advantages of monitors is their ability to communicate
with processes and schedule them without being aware of process names.
Joyce agents also refer indirectly to one another by means of port variables.

In CSP, an input/output command must name the source or destination
process directly. The text of a process must therefore be modified when it is
used in different contexts. This complicates the examples in (Hoare 1978):
the user of a process array S(1..n) is itself named S(0)! And the prime sieve
is composed of three different kinds of processes to satisfy the naming rules.

Direct process naming also makes it awkward to write a server with
multiple clients of different kinds (such as the scheduled printer). If the
clients are not known a priori, it is in fact impossible.

ECSP and RBCSP use process variables for indirect naming. CSP80,
occam, Planet and a theoretical variant of CSP, which I shall call TCSP
(Hoare 1985), use ports or channels.

Message declarations

So far, the most common errors in Joyce programs have been type errors in
input/output commands. I am therefore convinced that any CSP language
must include message declarations which permit complete type checking dur-
ing compilation. In this respect, CSP and occam are insecure languages.
Although ECSP does not include message declarations, the compiler per-
forms type checking of messages after recognizing (undeclared) channels by
statement analysis.

The simplest idea is to declare channels which can transfer messages of
a single type only (as in CSP80 or Planet). But this does not even work
well for a simple agent that copies a bounded stream. Such an agent needs
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two channels, both capable of transferring two different kinds of symbols.
Otherwise, four channels are required: two for stream values and two for eos
signals.

As a modest increase in complexity, I considered a channel which can
transfer messages of a finite number of distinct types T1, T2, . . . , Tn. But
this proposal is also problematic since (1) it is necessary to treat signals
as distinct data types, and (2) an agent still needs multiple channels to
distinguish between different kinds of messages of the same type (such as
the has and insert symbols in the intset example).

To avoid a confusing proliferation of channels, the ability to define chan-
nel alphabets with named symbols seems essential. The symbol names play
the same role as the (undeclared) “constructors” of CSP or the procedure
names of monitors: they describe the nature of an event in which a process
participates.

Channel sharing

The intset pipeline is made simpler and more efficient by the use of a single
output channel shared by all the agents. A set agent which receives a query
about the member it holds can immediately output the answer through the
common channel instead of sending it through all its successors. This im-
provement was suggested in (Dijkstra 1982).

Channel sharing also simplifies the scheduled printer. If every channel
can be used by two processes only, it is necessary to connect a resource
process to multiple users by means of a quantifier called a “replicator.”

I expect channel sharing to work well for lightly used resources. But,
if a shared resource is used heavily, some user agents may be bypassed by
others and thus prevented from using the resource. In such cases, it may be
necessary to introduce separate user channels to achieve fairness.

Output polling

In CSP, ECSP, RBCSP and occam, polling is done by input commands only.
This restriction prevents a sender and receiver from polling the same channel
simultaneously. Unfortunately, it also makes the input and output of a ring
buffer asymmetric (Hoare 1978).

Like CSP80 and TCSP, Joyce permits both input and output polling. It
is the programmer’s responsibility to ensure that a polling agent is always
matched by an agent that executes an input/output statement. This prop-
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erty is automatically satisfied in a hierarchical system in which every agent
polls its masters only (Silberschatz 1979).

Polling loops

CSP includes a polling loop that terminates when all the processes polled
have terminated. Hoare (1985) remarks: “The trouble with this convention
is that it is complicated to define and implement.”

In RBCSP, a process waiting for input from a terminated process is
terminated only when all processes are waiting or terminated.

A Joyce agent terminates when it reaches the end of its procedure. This
is a much more flexible mechanism which enables an agent to send a termi-
nation signal to another agent without terminating itself.

I resisted the temptation to include polling loops, such as

do inp?int(x) −> out!int(x)
until inp?eos −> out!eos end

Although this simplifies the copy and printer agents, it cannot be used di-
rectly in the other examples. It may even complicate programs, if it is used
where it is inappropriate.

Unbounded activation

In CSP one can activate only a fixed number of processes simultaneously.
If these processes terminate, they do it simultaneously. A process cannot
activate itself recursively. It is, however, possible to activate a fixed-length
array of indexed processes which can imitate the behavior (but not quite the
elegance) of a recursive process.

Joyce supports unbounded (recursive) agent activation. The beauty of
the recursive algorithms is sufficient justification for this feature. The ability
to activate identical agents by iteration and recursion removes the need for
indexed agents (as in CSP, RBCSP, Planet and occam). The rule that an
agent terminates only when all its subagents have terminated was inspired
by the task concept of Ada (Roubine 1980).

Procedures and functions

To force myself to make agents as general as possible, I excluded ordinary
procedures and functions from Joyce. As a result, I felt obliged to design an
agent concept which includes the best features of Pascal procedures: value
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parameters, recursion and efficient implementation. Although agent proce-
dures may be recursive, every agent has one instance only of its own vari-
ables. Consequently, a compiler can determine the lengths of agent activation
records. This simplifies storage allocation considerably.

Security

A programming language is secure if its compiler and run-time support can
detect all violations of the language rules (Hoare 1973). Programs written in
an insecure language may cause obscure system-dependent errors which are
inexplicable in terms of the language report. Such errors can be extremely
difficult to locate and correct.

Joyce is a far more secure language than Pascal (Welsh 1977). A compiler
can check message types and ensure that agents use disjoint sets of variables
only. (The disjointness is automatically guaranteed by the syntax and scope
rules.)

When an agent is activated, every word of its activation record may be
set to nil. Afterwards a simple run-time check can detect unitialized port
variables.

There are no dangling references, either, to channels that have ceased to
exist. Every port variable of an agent is either nil or points to an internal or
external channel of the agent. Now, an internal channel exists as long as the
agent and its port variables exist. And an external channel exists as long as
the ancestor that created it. This ancestor, in turn, exists at least as long
as the given agent. So, a port variable is either nil or points to an existing
channel.

Implementability

The first Joyce compiler is a Pascal program of 3300 lines which generates
P-code. The code is currently interpreted by a Pascal program of 1000 lines.
(Reals are not implemented yet.) The surprisingly simple implementation
of agents and channels will be described in a future paper.

Proof rules

The problems of finding proof rules for Joyce are currently being studied and
are not discussed here. However, the algorithms shown have a convincing
simplicity that makes me optimistic in this respect.
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Language comparison

Table 1 summarizes the key features of the CSP languages (except TCSP).

Table 1

CSP occam ECSP Planet RBCSP CSP80 Joyce

Indirect naming − + + + + + +
Message declaration − − − + + + +
Input polling + + + − + + +
Output polling − − − − − + +
Recursion − − − − − − +

Hoare (1978) emphasized that CSP should not be regarded as suitable
for use as a programming language but only as a partial solution to the
problems tackled. However, all that remained to be done was to modify these
concepts. CSP is still the foundation for the new generation of concurrent
programming languages discussed here.

5 FINAL REMARKS

This paper has presented a secure programming language which removes
several restrictions of the original CSP proposal by introducing:

1. port variables

2. channel alphabets

3. output polling

4. channel sharing

5. recursive agents

The language has been implemented on a personal computer.
More work remains to be done on verification rules and implementation

of the language on a parallel computer. The language needs to be used
extensively for the design of parallel algorithms before a final evaluation can
be made.
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