

AN OUTLINE OF A COURSE ON

OPERATING SYSTEM PRINCIPLES

PER BRINCH HANSEN

(1971)

In 1970 the author began writing a comprehensive textbook on operating

system principles. This is a description of its structure and how far it had

progressed a year later.

COMPUTER SCIENCE AND OPERATING SYSTEMS

In November 1970 I began writing a textbook on operating system principles
at Carnegie-Mellon University. This is a description of its structure and how
far it has progressed.

The goal is to give students of computer science and professional pro-
grammers a general understanding of operating systems. The only back-
ground required is an understanding of the basic structure of computers and
programming languages and some practical experience in writing and test-
ing non-trivial programs. In a few cases a knowledge of elementary calculus
and probability theory is also needed. The components of the course are
well-known to a small group of designers, but most operating systems reveal
an inadequate understanding of them.

The first and most obvious problem is to delimit the subject and consider
its place in computer science education. I define an operating system as a set
of manual and automatic procedures which enable a group of users to share
a computer system efficiently. The keyword in this definition is sharing: it
means competetion for the use of physical resources but also cooperation

P. Brinch Hansen, An outline of a course on operating system principles. In Operating
Systems Techniques, Proceedings of a Seminar at Queen’s University, Belfast, Northern
Ireland, August–September 1971. C. A. R. Hoare and R. H. Perrott, Eds. Academic Press,
New York (1972), 29–36. Copyright c© 1972, Academic Press.

1

2 PER BRINCH HANSEN

among users exchanging programs and data on the same computer system.
All shared computer systems must schedule user computations in some order,
protect them against one each other, and give them means of long-term
storage of programs and data. They must also perform accounting of the
cost of computing and measure the actual performance of the system.

In early computer systems, operators carried out most of these functions,
but during the last fifteen years the programs that we call operating systems
have gradually taken over these aspects of sharing.

Although most components of present computers are sequential in na-
ture, they can work simultaneously to some extent. This influences the
design of operating systems so much that the subject can best be described
as the management of shared multiprogramming systems.

Operating systems are large programs developed and used by a changing
group of people. They are often modified considerably during their life-
time. Operating systems must necessarily impose certain restrictions on all
users. But this should not lead us to regard them as being radically different
from other programs. They are just examples of large programs based on
fundamental principles of computer science. The proper aim of education is
to identify these fundamentals.

The student should realize that principles and methods of resource shar-
ing have a general utility that goes beyond operating systems. Any large
programming effort will be heavily influenced by the presence of several lev-
els of storage, by the possibility of executing smaller tasks independently,
and by the need for sharing a common set of data among such tasks. We
find it convenient to distinguish between operating systems and user com-
putations because the former can enforce certain rules of behavior on the
latter. It is important, however, to realize that each level of programming
solves some aspect of resource allocation.

I argue therefore that the study of operating systems leads to the recog-
nition of general principles which should be taught as part of a core of com-
puter science. Assuming that the student has an elementary background
in programming languages, data structures and computer organization, the
course concentrates on the following areas of computer science: concurrent
computations, resource sharing and program construction.

Let us look at the course in some detail. It consists of eight parts which
are summarized in the Appendix. The following is a more informal presen-
tation of its basic attitude.

A COURSE ON OPERATING SYSTEM PRINCIPLES 3

TECHNOLOGICAL BACKGROUND

The necessity of controlling access to shared computer systems automatically
is made clear by simple arguments about the poor utilization of equipment in
an open shop operated by the users themselves, one at a time. As a first step
in this direction, I describe the classical batch processing system which carries
out computations on a main computer while a smaller computer prepares
and prints magnetic tapes. The strict sequential nature of the processors
and their backing storage in this early scheme made it necessary to prevent
human interaction with computations and schedule them in their order of
arrival inside a batch.

These restrictions on scheduling disappear to some extent with the in-
troduction of multiprogramming techniques and large backing stores with
random access. This is illustrated by two simple operating systems: the first
one is a spooling system which handles a continuous stream of input, com-
putation and output on a multiprogrammed computer with drum storage;
the other is an interactive system in which main storage is shared cyclically
among several computations requested from remote terminals.

Through a chain of simple arguments the student gradually learns to
appreciate the influence of technological constraints on the service offered by
operating systems.

THE SIMILARITY OF OPERATING SYSTEMS

The main theme of the course is the similarity of problems faced by all oper-
ating systems. To mention one example: all shared computer systems must
handle concurrent activities at some level. Even if a system only schedules
one computation at a time, users can still make their requests simultaneously.
This problem can, of course, be solved by the users themselves (forming a
waiting line) and by the operators (writing down requests on paper). But
the observation is important, since our goal is to handle the problems of
sharing automatically.

It is also instructive to compare a batch processing and a spooling sys-
tem. Both achieve high efficiency by means of concurrent activities: in a
batch processing system independent processors work together; in a spool-
ing system a single processor switches among independent programs. Both
systems use backing storage (tape and drum) as a buffer to compensate for
speed variations between the producers and consumers of data.

As another example, consider real-time systems for process control or

4 PER BRINCH HANSEN

conversational interaction. In these systems, concurrent processes must be
able to exchange data in order to cooperate on common tasks. But again,
this problem exists in all shared computer systems: in a spooling system
user computations exchange data with concurrent input/output processes;
and in a batch processing system we have another set of concurrent processes
which exchange data by means of tapes mounted by operators.

So I find that all operating systems face a common set of problems.
To recognize these we must reject the established classification of operating
systems into batch processing, time sharing, and real time systems which
stresses the dissimilarities of various forms of technology and user service.
This does not mean that the problems of adjusting an operating system
to the constraints of a certain environment are irrelevant. But the students
will solve them much better when they have grasped the underlying common
principles.

You will also look in vain for chapters on input/output and filing systems.
For a particular operating system considerations about how these problems
are handled are highly relevant; but again I have concentrated on the more
elementary problems involved in these complicated tasks, namely, process
synchronization, storage management and resource protection.

SEQUENTIAL AND CONCURRENT COMPUTATIONS

After this introduction, the nature of computations is described. A com-
putation is a set of operations applied to a set of data in order to solve a
problem. The operations must be carried out in a certain order to ensure
that the results of some of them can be used by others. In a sequential
process operations are carried out strictly one at a time. But most of our
computational problems only require a partial ordering of operations in time:
some operations must be carried out before others, but many of them can
be carried out concurrently.

The main obstacles to the utilization of concurrency in computer systems
are economy and human imagination. Sequential processes can be carried
out cheaply by repeated use of simple equipment; concurrent computations
require duplicated equipment and time-consuming synchronization of opera-
tions. Human beings find it extremely difficult to comprehend the combined
effect of a large number of activities which evolve simultaneously with in-
dependent rates. In contrast, our understanding of a sequential process is
independent of its actual speed of execution. All that matters is that op-
erations are carried out one at a time with finite speed, and that certain

A COURSE ON OPERATING SYSTEM PRINCIPLES 5

relations hold between the data before and after each operation.
So sequential processes closely mirror our thinking habits, but a computer

system is utilized better when its various parts operate concurrently. As a
compromise, we try to partition our problems into a moderate number of
sequential activities which can be programmed separately and then combined
for concurrent execution. These processes are loosely connected in the sense
that they can proceed simultaneously with arbitrary rates except for short
intervals when they exchange data.

After a brief review of methods of structuring data and sequential pro-
grams, I consider the synchronizing requirements of concurrent processes. It
is shown that the results of concurrent processes which share data cannot
be predicted unless some operations exclude each other in time. Operations
which have this property are called critical regions. Mutual exclusion can be
controlled by a data structure, called a semaphore, consisting of a boolean,
defining whether any process is inside its critical region, and a queue, con-
taining the set of processes waiting to enter their regions.

A critical region is one example of a timing constraint or synchronization
imposed on concurrent processes. Synchronization is also needed when some
processes produce data which are consumed by other processes. The simplest
input/output relationship is the exchange of timing signals between processes.
The constraint here is that signals cannot be received faster than they are
sent. This relationship can be represented by an integer semaphore accessed
by signal and wait operations only.

Realistic communication between processes requires the exchange of data
structures. This problem can be solved by synchronizing primitives operat-
ing on semaphores and data structures which are accessible to all the pro-
cesses involved. It is tempting to conclude that critical regions, common
data, and wait and signal operations are the proper concepts to include in
a programming language. Experience shows that the slightest mistake in
the use of these tools can result in erroneous programs which are practically
impossible to correct because their behavior is influenced by external factors
in a time-dependent, irreproducible manner.

A more adequate solution is to include message buffers as primitive data
structures in the programming language and make them accessible only
through well-defined send and receive operations. The crucial point of this
language feature is that storage containing shared data (messages) is ac-
cessible to at most one process at a time. It has been proved that when
a set of smaller systems with time-independent behavior are connected by

6 PER BRINCH HANSEN

means of message buffers only, the resulting system can also be made time-
independent in behavior.

The most general form of process interaction is one in which a process
must be delayed until another process has ensured that certain relationships
hold between the components of a shared data structure. This form of
synchronization can be expressed directly by means of conditional critical
regions.

The conceptual simplicity of simple and conditional critical regions is
achieved by ignoring the sequence in which waiting processes enter these
regions. This abstraction is unrealistic for heavily used resources. In such
cases, the operating system must be able to identify competing processes
and control the scheduling of resources among them. This can be done by
means of a monitor—a set of shared procedures which can delay and activate
individual processes and perform operations on shared data.

Finally, I consider the problems of deadlocks and their prevention by
hierarchical ordering of process interactions.

RESOURCE MANAGEMENT

Most of the previous concepts are now widely used. Far more controversial
are the problems of how abstract computations are represented and man-
aged on physical systems with limited resources. At first sight, problems
caused by the physical constraints of computers seem to be of secondary
importance to the computational problems we are trying to solve. But in
practice most programming efforts are dominated by technological problems
and will continue to be so. It will always be economically attractive to share
resources among competing computations, use several levels of storage, and
accept occasional hardware malfunction.

It seems unrealistic to look for a unifying view of how different kinds of
technology are used efficiently. The student should realize that these issues
can only be understood in economic terms. What we can hope to do is to
describe the circumstances under which certain techniques will work well.

The implementation of the process concept is considered in two chapters
on processor multiplexing and storage organization. The first of these de-
scribes the representation of processes and scheduling queues at the lowest
level of programming and the implementation of synchronizing primitives.
Hardware registers, clocks and interrupts are treated as technological tools
which in many cases can be replaced by more appropriate concepts at higher
levels of programming. The second of these chapters discusses the compro-

A COURSE ON OPERATING SYSTEM PRINCIPLES 7

mises between associative and location-dependent addressing, and the dy-
namic allocation of fixed and variable-length data structures in storage with
one or more levels.

Following this, I discuss the influence of various scheduling algorithms:
first-come first-served, shortest job next, highest response ratio next, round
robin, and so on, on the behavior of the system in terms of average response
times to user requests.

A CASE STUDY

At the end of the course, the conceptual framework is used to describe an
existing operating system in depth using a consistent terminology.

I have selected the RC 4000 multiprogramming system (Brinch Hansen
1970) as a case study, because it is the only one I know in detail, and
is a small, consistent design which illustrates essential ideas of concurrent
processes, message communication, scheduling and resource protection.

THE CHOICE OF A DESCRIPTION LANGUAGE

So far nearly all operating systems have been written partly or completely in
machine language. This makes them unnecessarily difficult to understand,
test and modify. I believe it is desirable and possible to write efficient oper-
ating systems almost entirely in a high-level language. This language must
permit hierarchal structuring of data and program, extensive error checking
at compile time, and production of efficient machine code.

To support this belief, I have used the programming language Pascal
(Wirth 1971) throughout the text to define operating system concepts con-
cisely by algorithms. Pascal combines the clarity needed for teaching with
the efficiency required for design. It is easily understood by programmers
familiar with Algol 60 or Fortran, but is a far more natural tool than these
for the description of operating systems because of the presence of data
structures of type record, class and pointer.

At the moment, Pascal is designed for sequential programming only,
but I extend it with a suitable notation for multiprogramming and resource
sharing. I have illustrated the description of operating systems in Pascal
elsewhere (Brinch Hansen 1971a, 1971b).

8 PER BRINCH HANSEN

STATUS OF THE COURSE

I conceived the plan for the course in March 1970 and started to work on
it in November 1970. Now, in November 1971, drafts have been written of
parts 1–4, and 6 (see the Appendix). Most of the work on parts 5, and 7–8
remains to be done. It is unlikely that the structure of the course will change
significantly, although the details certainly will.

APPENDIX: THE CONTENTS OF THE COURSE

1. An overview of operating systems

The purpose of an operating system. Technological background: manual
scheduling, non-interactive scheduling with sequential and random access
backing storage, interactive scheduling. The similarity of operating systems.
Special versus general-purpose systems.

2. Sequential processes

Abstraction and structure. Data and operations. Sequential and concur-
rent computations. Methods of structuring data and sequential programs.
Hierarchal program construction. Programming levels viewed as virtual ma-
chines. Our understanding and verification of programs.

3. Concurrent processes

Time-dependent programming errors in concurrent computations. Definition
of functional behavior in terms of input/output histories. The construction
of functional systems from smaller functional components. Concurrent sys-
tems with inherent time-dependent behavior: priority scheduling and shared
processes.

Disjoint and interacting processes. Mutual exclusion of operations on
shared data. Simple and conditional critical regions. Process communication
by semaphores and message buffers. Explicit control of process scheduling
by monitors.

The deadlock problem. Prevention of deadlocks by hierarchal ordering
of process interactions.

4. Processor multiplexing

Short-term and medium-term scheduling. A computer system with identical
processors connected to a single store. Peripheral versus central processors.

A COURSE ON OPERATING SYSTEM PRINCIPLES 9

Process descriptions, states and queues. Processor execution cycle. Schedul-
ing of critical regions by means of a storage arbiter. Implementation of the
scheduling primitives wait, signal, initiate and terminate process. Influence
of critical regions on preemption. Processor multiplexing with static and
dynamic priorities. Implementation details: hardware registers, clock, inter-
rupts. Timing constraints.

5. Storage organization

Properties of abstract and physical storage. Methods of address mapping:
searching, key transformation and base registers.

Single-level storage: fixed partitioning, dynamic allocation of fixed and
variable-length data structures. Compacting and fragmentation.

Hierarchal storage: swapping, demand paging and extended storage. Lo-
cality principle. Prevention of thrashing. Placement and replacement strate-
gies. Hardware support.

Influence of input/output, process communication, and scheduling on
storage allocation.

6. Scheduling algorithms

Objectives of scheduling policies. Queueing models of user requests and
computations. Performance measures. A conservation law for a class of
priority scheduling algorithms.

Non-preemptive scheduling: fixed priorities, first-come first-served, short-
est job next, and highest response ratio next.

Preemptive scheduling: round robin with swapping. Methods of reducing
transfers between storage levels. Scheduling with performance feedback.

7. Resource protection

The concept of a process environment of shared objects. Requirements of
naming and protection. Existing protection mechanisms: privileged execu-
tion state, storage protection, file systems with private and public data, user
password identification, protection levels and process hierarchies.

8. A case study

A detailed analysis of the structure, size and performance of the RC 4000
multiprogramming system.

10 PER BRINCH HANSEN

Acknowledgements

Without the encouragement of Alan Perlis this work would not have been
undertaken. I am indebted to Nico Habermann, Anita Jones and Bill Wulf
who read and criticized all or part of the manuscript. I learned much from
discussions with Tony Hoare. It should also be mentioned that without the
foundation of laid by Edsger Dijkstra (1965) we would still be unable to
separate principles from their applications in operating systems. The idea of
looking upon the management of shared computer systems as a general data
processing problem was inspired by a similar attitude of Peter Naur (1966)
towards program translation.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238–250.

Brinch Hansen, P. 1971a. Short-term scheduling in multiprogramming systems. 3rd ACM
Symposium on Operating System Principles, Stanford University, Stanford, CA, (Oc-
tober), 101–105.

Brinch Hansen, P. 1971b. A comparison of two synchronizing concepts. (November). In
Acta Informatica 1, 3 (1972), 190–199.

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind-
hoven, The Netherlands, (September).

Naur, P. 1966. Program translation viewed as a general data processing problem. Com-
munications of the ACM 9, 3 (March), 176–179.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35–63.

