
        

RC 4000 SOFTWARE:

MULTIPROGRAMMING SYSTEM

PER BRINCH HANSEN

(1969)

The RC 4000 multiprogramming system consists of a monitor program that

can be extended with a hierarchy of operating systems to suit diverse require-

ments of program scheduling and resource allocation. This manual defines the

functions of the monitor and the basic operating system, which allows users

to initiate and control parallel program execution from typewriter consoles.

The excerpt reprinted here is the general description of the philosophy and

structure of the system. This part will be of interest to anyone wishing an un-

derstanding of the system in order to evaluate its possibilities and limitations

without going into details about exact conventions. The discussion treats the

hardware structure of the RC 4000 only in passing.

1 SYSTEM OBJECTIVES

This chapter outlines the philosophy that guided the design of the RC 4000
multiprogramming system. It emphasizes the need for different operating
systems to suit different applications.

The primary goal of multiprogramming is to share a central processor and its
peripheral equipment among a number of programs loaded in the internal
store. This is a meaningful objective if single programs only use a fraction
of the system resources and if the speed of the machine is so fast, compared
to that of peripherals, that idle time within one program can be utilized by
other programs.

P. Brinch Hansen, RC 4000 Software: Multiprogramming System, Part I General Descrip-
tion. Regnecentralen, Copenhagen, Denmark, April 1969, 13–52. Copyright c© 1969, Per
Brinch Hansen.
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The present system is implemented on the RC 4000 computer, a 24-bit,
binary computer with typical instruction execution times of 4 microseconds.
It permits practically unlimited expansion of the internal store and standard-
ized connection of all kinds of peripherals. Multiprogramming is facilitated
by concurrency of program execution and input/output, program interrup-
tion, and storage protection.

The aim has been to make multiprogramming feasible on a machine
with a minimum internal store of 16 k words backed by a fast drum or disk.
Programs can be written in any of the available programming languages and
contain programming errors. The storage protection system guarantees non-
interference among 8 parallel programs, but it is possible to start up to 23
programs provided some of them are error free.

The system uses standard multiprogramming techniques: the central pro-
cessor is shared between loaded programs. Automatic swapping of programs
in and out of the store is possible but not enforced by the system. Backing
storage is organized as a common data bank, in which users can retain named
files in a semi-permanent manner. The system allows a conversational mode
of access from typewriter consoles.

An essential part of any multiprogramming system is an operating system,
a program that coordinates all computational activities and input/output.
An operating system must be in complete control of the strategy of program
execution, and assist the users with such functions as operator communica-
tion, interpretation of job control statements, allocation of resources, and
application of execution time limits.

For the designer of advanced information systems, a vital requirement of
any operating system is that it allows him to change the mode of operation
it controls; otherwise his freedom of design can be seriously limited. Unfor-
tunately this is precisely what present operating systems do not allow. Most
of them are based exclusively on a single mode of operation, such as batch
processing, priority scheduling, real-time scheduling, or time-sharing.

When the need arises, the user often finds it hopeless to modify an op-
erating system that has made rigid assumptions in its basic design about a
specific mode of operation. The alternative—to replace the original operat-
ing system with a new one—is in most computers a serious, if not impossible,
matter, the reason being that the rest of the software is intimately bound to
the conventions required by the original system.

This unfortunate situation indicates that the main problem in the design
of a multiprogramming system is not to define functions that satisfy specific
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operating needs, but rather to supply a system nucleus that can be extended
with new operating systems in an orderly manner. This is the primary
objective of the RC 4000 system.

The nucleus of the RC 4000 multiprogramming system is a monitor pro-
gram with complete control of storage protection, input/output, and in-
terrupts. Essentially the monitor is a software extension of the hardware
structure, which makes the RC 4000 more attractive for multiprogramming.
The following elementary functions are implemented in the monitor:

scheduling of time slices among programs executed
in parallel by means of a digital clock,

initiation and control of program execution at
the request of other running programs,

transfer of messages among running programs,

initiation of data transfers to or from peripherals.

The monitor has no built-in strategy of program execution and resource
allocation; it allows any program to initiate other programs in a hierarchal
manner and to execute them according to any strategy desired. In this hi-
erarchy of programs an operating system is simply a program that controls
the execution of other programs. Thus operating systems can be intro-
duced in the system as other programs without modification of the monitor.
Furthermore operating systems can be replaced dynamically, enabling each
installation to switch among various modes of operation; several operating
systems can, in fact, be active simultaneously.

In the following chapters we shall explain this dynamic operating system
concept in detail. In accordance with our philosophy all questions about
particular strategies of program scheduling will be postponed, and the dis-
cussion will concentrate on the fundamental aspects of the control of an
environment of parallel processes.

2 ELEMENTARY MULTIPROGRAMMING PROBLEMS

This chapter introduces the elementary multiprogramming problems of mu-
tual exclusion and synchronization of parallel processes. The discussion is
restricted to the logical problems that arise when independent processes try
to access common variables and shared resources. An understanding of these
concepts is indispensable to the uninitiated reader, who wants to appreciate
the difficulties of switching from uniprogramming to multiprogramming.
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2.1 Multiprogramming

In multiprogramming the sharing of computing time among programs is
controlled by a clock, which interrupts program execution frequently and
activates a monitor program. The monitor saves the registers of the inter-
rupted program and allocates the next slice of computing time to another
program and so on. Switching from one program to another is also performed
whenever a program must wait for the completion of input/output.

Thus although the computer is only able to execute one instruction at
a time, multiprogramming creates the illusion that programs are being exe-
cuted simultaneously, mainly because peripherals assigned to different pro-
grams indeed operate in parallel.

2.2 Parallel Processes

Most of the elementary problems in multiprogramming arise from the fact
that one process (e.g. an executed program) cannot make any assumptions
about the relative speed and progress of other processes. This is a potential
source of conflict whenever two processes try to access a common variable
or a shared resource.

It is evident that this problem will exist in a truly parallel system, in
which programs are executed simultaneously on several central processors.
It should be realized, however, that the problem will also appear in a quasi-
parallel system based on the sharing of a single processor by means of inter-
rupts; since a program cannot detect when it has been interrupted, it does
not know how far other programs have progressed.

Another way of stating this is that if one considers the system as seen
from within a program, it is irrelevant whether multiprogramming is im-
plemented on one or more central processors—the logical problems are the
same.

Consequently a multiprogramming system must in general be viewed as
an environment with a number of truly parallel processes. Having reached
this conclusion, a natural generalization is to treat not only program exe-
cution but input/output also as independent, parallel processes. This point
will be illustrated abundantly in the following chapters.

2.3 Mutual Exclusion

The idea of multiprogramming is to share the computing equipment among
a number of parallel programs. At any moment, however, a given resource
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must belong to one program only. In order to ensure this it is necessary to
introduce global variables, which programs can inspect to decide whether a
given resource is available or not.

As an example consider a typewriter used by all programs for messages
to the operator. To control access to this device we might introduce a global
boolean typewriter available. When a program p wishes to output a message,
it must examine and set this boolean by means of the following instructions:

wait: load typewriter available
skip if true
jump to wait
load false
store typewriter available

While this is taking place the program may be interrupted after the loading
of the boolean, but before inspection and assignment to it. The register
containing the value of the boolean is then stored within the monitor, and
program q is started. Q may load the same boolean and find that the type-
writer is available. Q accordingly assigns the value false to the boolean and
starts using the typewriter. After a while q is interrupted, and at some later
time p is restarted with the original contents of the register reestablished by
the monitor. Program p continues the inspection of the original value of the
boolean and concludes erroneously that the typewriter is available.

This conflict arises because programs have no control over the interrupt
system. Thus the only indivisible operations available to programs are single
instructions such as load, compare, and store. This example shows that one
cannot implement a multiprogramming system without ensuring a mutual
exclusion of programs during the inspection of global variables. Evidently
the entire reservation sequence must be executed as an indivisible function.
One of the purposes of a monitor program is to execute indivisible functions
in the disabled mode.

In the use of reservation primitives one must be aware of the problem
of “the deadly embrace” between two processes, p and q, which attempt to
share the resources r and s as follows:

process p: wait and reserve(r) ... wait and reserve(s) ...
process q: wait and reserve(s) ... wait and reserve(r) ...

This can cause both processes to wait forever, since neither is aware of that
it wants what the other one has.
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To avoid this problem we need a third process (an operating system) that
controls the allocation of shared resources between p and q in a manner that
guarantees that both will be able to proceed to completion (if necessary by
delaying the other until resources become available).

2.4 Mutual Synchronization

In a multiprogramming system parallel processes must be able to cooperate
in the sense that they can activate one another and exchange information.
One example of a process activating another process is the initiation of in-
put/output by a program. Another example is that of an operating system
that schedules a number of programs. The exchange of information between
two processes can also be regarded as a problem of mutual exclusion, in
which the receiver must be prevented from inspecting the information until
the sender has delivered it in a common storage area.

Since the two processes are independent with respect to speed, it is not
certain that the receiver is ready to accept the information at the very mo-
ment the sender wishes to deliver it, or conversely the receiver can become
idle at a time when there is no further information for it to process.

This problem of the synchronization of two processes during a transfer
of information must be solved by indivisible monitor functions, which allow
a process to be delayed on its own request and activated on request from
another process.

For a more extensive analysis of multiprogramming fundamentals, the
reader should consult E. W. Dijkstra’s monograph: Cooperating Sequential
Processes. Math. Dep. Technological University, Eindhoven, (Sep. 1965).

3 BASIC MONITOR CONCEPTS

This chapter opens a detailled description of the RC 4000 monitor. A mul-
tiprogramming system is viewed as an environment in which program exe-
cution and input/output are handled uniformly as cooperating, parallel pro-
cesses. The need for an exact definition of the process concept is stressed.
The purpose of the monitor is to bridge the gap between the actual hardware
and the abstract concept of multiprogramming.

3.1 Introduction

The aim has been to implement a multiprogramming system that can be
extended with new operating systems in a well-defined manner. In order
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to do this a sharp distinction must be made between the control and the
strategy of program execution.

The mechanisms provided by the monitor solve the logical problems of
the control of parallel processes. They also solve the safety problems that
arise when erroneous or malicious processes try to interfere with other pro-
cesses. They do, however, leave the choice of particular strategies of program
scheduling to the processes themselves.

With this objective in mind we have implemented the following funda-
mental mechanisms within the monitor:

simulation of parallel processes,
communication among processes,
creation, control, and removal of processes.

3.2 Programs and Internal Processes

As a first step we shall assign a precise meaning to the process concept, i.e.
introduce an unambiguous terminology for what a process is and how it is
implemented on the RC 4000.

We distinguish between internal and external processes, roughly corre-
sponding to program execution and input/output.

More precisely: an internal process is the execution of one or more inter-
ruptable programs in a given storage area. An internal process is identified
by a unique process name. Thus other processes need not be aware of the
actual location of an internal process in the store, but can refer to it by
name.

The following figure illustrates a division of the internal store among the
monitor and three internal processes, p, q, and r.

Later it will be explained how internal processes are created and how
programs are loaded into them. At this point it should only be noted that
an internal process occupies a fixed, contiguous storage area during its whole
lifetime. The monitor has a process description of each internal process; this
table defines the name, storage area, and current state of the process.

Computing time is shared cyclically among all active internal processes;
as a standard the monitor allocates a maximum time slice of 25 milliseconds
to each internal process in turn; after the elapse of this interval the process is
interrupted and its registers are stored in the process description; following
this the monitor allocates 25 milliseconds to the next internal process, and
so on. The cyclic queue of active internal processes is called the time slice
queue.
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A sharp distinction is made between the concepts program and internal
process. A program is a collection of instructions describing a computational
process, whereas an internal process is the execution of these instructions in
a given storage area.

An internal process like p can involve the execution of a sequence of
programs, for example, editing followed by translation and execution of an
object program. It is also possible that copies of the same program (e.g. the
Algol compiler) can be executed simultaneously in two processes q and r.
These examples illustrate the need for a distinction between programs and
processes.

3.3 Documents and External Processes

In connection with input/output the monitor distinguishes between periph-
eral devices, documents, and external processes.

A peripheral device is an item of hardware connected to the data channel
and identified by a device number.

A document is a collection of data stored on a physical medium. Exam-
ples of documents are:

a roll of paper tape,
a deck of punched cards,
a printer form,
a reel of magnetic tape,
a data area on the backing store.
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By the expression external process we refer to the input/output of a given
document identified by a unique process name. This concept implies that
once a document has been mounted, internal processes can refer to it by
name without knowing the actual device it uses.

For each external process the monitor keeps a process description defining
its name, kind, device number, and current state. The process kind is an
integer defining the kind of peripheral device on which the document is
mounted.

For each kind of external process the monitor contains an interrupt pro-
cedure that can initiate and terminate input/output on request from internal
processes.

3.4 Monitor

The monitor is a program activated by means of interrupts. It can execute
privileged instructions in the disabled mode, meaning that (1) it is in com-
plete control of input/output, storage protection, and the interrupt system,
and that (2) it can execute a sequence of instructions as an indivisible entity.

After initial system loading the monitor resides permanently in the in-
ternal store. We do not regard the monitor as an independent process, but
rather as a software extension of the hardware structure, which makes the
computer more attractive for multiprogramming. Its function is to (1) keep
descriptions of all processes; (2) share computing time among internal and
external processes; and (3) implement procedures that processes can call in
order to create and control other processes and communicate with them.

So far we have described the multiprogramming system as a set of inde-
pendent, parallel processes identified by names. The emphasis has been on a
clear understanding of relationships among resources (store and peripherals),
data (programs and documents), and processes (internal and external).

4 PROCESS COMMUNICATION

This chapter deals with the monitor procedures for the exchange of informa-
tion between two parallel processes. The mechanism of message buffering is
defended on the grounds of safety and efficiency.

4.1 Message Buffers and Queues

Two parallel processes can cooperate by sending messages to each other. A
message consists of eight words. Messages are transmitted from one process
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to another by means of message buffers selected from a common pool within
the monitor.

The monitor administers a message queue for each process. Messages are
linked to this queue when they arrive from other processes. The message
queue is a part of the process description.

Normally a process serves its queue on a first-come, first-served basis.
After the processing of a message, the receiving process returns an answer
of eight words to the sending process in the same buffer.

As described in Section 2.4, communication between two independent
processes requires a synchronization of the processes during a transfer of
information. A process requests synchronization by executing a wait opera-
tion; this causes a delay of the process until another process executes a send
operation.

The term delay means that the internal process is removed temporarily
from the time slice queue; the process is said to be activated when it is again
linked to the time slice queue.

4.2 Send and Wait Procedures

The following monitor procedures are available for communication among
internal processes:

send message(receiver, message, buffer)
wait message(sender, message, buffer)
send answer(result, answer, buffer)
wait answer (result, answer, buffer)

Send message copies a message into the first available buffer within the
pool and delivers it in the queue of a named receiver. The receiver is acti-
vated if it is waiting for a message. The sender continues after being informed
of the address of the message buffer.

Wait message delays the calling process until a message arrives in its
queue. When the process is allowed to proceed, it is supplied with the name
of the sender, the contents of the message, and the address of the message
buffer. The buffer is removed from the queue and is now ready to transmit
an answer.

Send answer copies an answer into a buffer in which a message has been
received and delivers it in the queue of the original sender. The sender of the
message is activated if it is waiting for the answer. The answering process
continues immediately.
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Wait answer delays the calling process until an answer arrives in a given
buffer. On arrival, the answer is copied into the process and the buffer is
returned to the pool. The result specifies whether the answer is a response
from another process, or a dummy answer generated by the monitor in re-
sponse to a message addressed to a non-existing process.

The use of these procedures can be illustrated by the following example
of a conversational process. The figure below shows one of several user pro-
cesses, which deliver their output on the backing store. After completion of
its output a user process sends a message to a converter process requesting it
to print the output. The converter process receives and serves these requests
one by one, thus ensuring that the line printer is shared by all user processes
with a minimum delay.

The algorithms of the converter and the user are as follows:

converter process:
wait message(sender, message, buffer);
print from backing store(message);
send answer(result, answer, buffer);
goto converter process;



   

12 PER BRINCH HANSEN

user process:
...
output on backing store;
send message(converter, message, buffer);
wait answer(result, answer, buffer);

4.3 General Event Procedures

The communication procedures enable a conversational process to receive
messages simultaneously from several other processes. To avoid becoming a
bottleneck in the system, however, a conversational process must be prepared
to be actively engaged in more than one conversation at a time. As an
example think of a conversational process that engages itself, on request
from another process, in a conversation with one of several human operators
in order to perform some manual operation (mounting of a tape etc.). If
one restricts a conversational process to only accepting one request (i.e. a
message) at a time, and to completing the requested action before receiving
the next request, the unacceptable consequence of this is that other processes
(including human operators at consoles) can have their requests for response
delayed for a long or even undefined time.

As soon as a conversational process has started a lengthy action, by
sending a message to some other process, it must receive further messages
and initiate other actions. It will then be reminded later of the completion
of earlier actions by means of normal answers. In general a conversational
process is now engaged in several requests at one time. This introduces a
scheduling and resource problem: when the process receives a request, some
of its resources (storage or peripheral devices) can be tied up by already
initiated actions; thus in some cases the process will not be able to honor
new requests before old ones are completed. In this case the process wants
to postpone the reception of some requests and leave them pending in the
queue, while examining others.

The procedures wait message and wait answer, which force a process to
serve its queue in a strict sequential order and delay itself while its own
requests to other processes are completed, do not fulfill the above require-
ments.

Consequently we have introduced two more general communication pro-
cedures, which enable a process to wait for the arrival of the next message
or answer and serve its queue in any order:
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wait event(last buffer, next buffer, result)
get event(buffer)

The term event denotes a message or an answer. In accordance with this the
queue of a process from now on will be called the event queue.

Wait event delays the calling process until either a message or an answer
arrives in its queue after a given last buffer. The process is supplied with
the address of the next buffer and a result indicating whether it contains
a message or an answer. If the last buffer address is zero, the queue is
examined from the start. The procedure does not remove the next buffer
from the queue or in any other way change its status.

As an example, consider an event queue with two pending buffers A and
B:

queue = buffer A, buffer B

The monitor calls: wait event(0, buffer) and wait event(A, buffer) will
cause immediate return to the process with buffer equal to A and B, re-
spectively; while the call: wait event(B, buffer) will delay the process until
another message or answer arrives in the queue after buffer B.

Get event removes a given buffer from the queue of the calling process.
If the buffer contains a message, it is made ready for the sending of an
answer. If the buffer contains an answer, it is returned to the common pool.
The copying of the message or answer from the buffer must be done by the
process itself before get event is called.

The following algorithm illustrates the use of these procedures within a
conversational process:
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first event: buffer:=0;
next event: last buffer:=buffer;

wait event(last buffer, buffer, result);
if result = message then
begin

exam request: if resources not available then go to next event;
init action: get event(buffer);

reserve resources;
...
send message to some other process;
save state of action;
end else
begin comment: result = answer;

term action: restore state of action;
get event(buffer);
release resources,
send answer to original sender;
end;
go to first event;

The process starts by examining its queue; if empty, it awaits the arrival
of the next event. If it finds a message, it checks whether it has the necessary
resources to perform the requested action; if not, it leaves the message in
the queue and examines the next event. Otherwise it accepts the message,
reserves resources, and initiates an action. As soon as this involves the
sending of a message to some other process, the conversational process saves
information about the state of the incomplete action and proceeds to examine
its queue from the start in order to engage itself in another action.

Whenever the process finds an answer in its queue, it immediately accepts
it and completes the corresponding action. It can now release the resources
used and send an answer to the original sender that made the request. After
this it examines the entire queue again to see whether the release of resources
has made it possible to accept pending messages.

One example of a process operating in accordance with this scheme is the
basic operating system s, which creates internal processes on request from
typewriter consoles. S can be engaged in conversations with several consoles
at the same time. It will only postpone an operator request if its storage
is occupied by other requests, or if it is already in the middle of an action
requested from the same console.
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4.4 Advantages of Message Buffering

In the design of the communication scheme we have given full recognition
to the fact that the multiprogramming system is a dynamic environment, in
which some of the processes may turn out to be black sheep.

The system is dynamic in the sense that processes can appear and disap-
pear at any time. Therefore a process does not in general have a complete
knowledge about the existence of other processes. This is reflected in the
procedure wait message, which makes it possible for a process to be unaware
of the existence of other processes until it receives messages from them.

On the other hand once a communication has been established between
two processes (e.g. by means of a message), they need a common identifi-
cation of it in order to agree on when it is terminated (e.g. by means of
an answer). Thus we can properly regard the selection of a buffer as the
creation of an identification of a conversation.

A happy consequence of this is that it enables two processes to exchange
more than one message at a time. We must be prepared for the occurence of
erroneous or malicious processes in the system (e.g. undebugged programs).
This is tolerable only if the monitor ensures that no process can interfere
with a conversation between two other processes. This is done by storing
information about the sender and receiver in each buffer, and checking it
whenever a process attempts to send or wait for an answer in a given buffer.

Efficiency is obtained by the queuing of buffers, which enables a sending
process to continue immediately after delivery of a message or an answer
regardless of whether the receiver is ready to process it or not.

In order to make the system dynamic it is vital that a process can be
removed at any time, even if it is engaged in one or more conversations.
In the previous example of user processes that deliver their output on the
backing store and ask a converter process to print it, it would be sensible to
remove a user process that has completed its task and is now only waiting
for an answer from the converter process. In this case the monitor leaves
all messages from the removed process undisturbed in the queues of other
processes. When these processes terminate their actions by sending answers,
the monitor simply returns the buffers to the common pool.

The reverse situation is also possible: during the removal of a process, the
monitor finds unanswered messages sent to the process. These are returned
as dummy answers to the senders. A special instance of this is the generation
of a dummy answer to a message addressed to a process that does not exist.

The main drawback of message buffering is that it introduces yet another
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resource problem, since the common pool contains a finite number of buffers.
If a process was allowed to empty the pool by sending messages to ignorant
processes, which do not respond with answers, further communication within
the system would be blocked. We have consequently set a limit to the
number of messages a process can send simultaneously. By doing this, and
by allowing a process to transmit an answer in a received buffer, we have
placed the entire risk of a conversation on the process that opens it (see
Section 7.4).

5 EXTERNAL PROCESSES

This chapter clarifies the meaning of the external process concept. It explains
initiation of input/output by means of messages from internal processes,
dynamic creation and removal of external processes, and exclusive access to
documents by means of reservation. The similarity of internal and external
processes is stressed.

5.1 Initiation of Input/Output

Consider the following situation, in which an internal process, p, inputs a
block from an external process, q (say, a magnetic tape):

P initiates input by sending a message to q:

send message(q, message, buffer)

The message consists of eight words defining an input/output operation
and the first and last addresses of a storage area within process p:
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message: operation
first storage address
last storage address
(five irrelevant words)

The monitor copies the message into a buffer and delivers it in the queue of
process q. Following this it uses the kind parameter in the process description
of process q to switch to a piece of code common to all magnetic tapes. If
the tape station is busy, the message is merely left in its queue; otherwise
input is initiated to the given storage area. On return, program execution
continues in process p.

When the tape station completes input by means of an interrupt, the
monitor generates an answer and delivers it in the queue of p, which in turn
receives it by calling wait answer:

wait answer(result, answer, buffer)

The answer contains status bits sensed from the device and the actual block
length expressed as the number of bytes and characters input:

answer: status bits
number of bytes
number of characters
(five irrelevant words)

After delivery of the answer, the monitor examines the queue of the ex-
ternal process q and initiates its next operation (unless the queue is empty).

Essentially all external processes follow this scheme, which can be defined
by the following algorithm:

external process: wait message;
analyse and check message;
initiate input/output;
wait interrupt;
generate answer;
send answer;
goto external process;

With low-speed, character-oriented devices, the monitor repeats in-
put/output and the interrupt response for each character until a complete
block has been transferred; (while this is taking place, the time between
interrupts is of course shared among internal processes). Internal processes
can therefore regard all input/output as block oriented.
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5.2 Reservation and Release

The use of message buffering provides a direct way of sharing an external
process among a number of internal processes: an external process can sim-
ply accept messages from any internal process and serve them in their order
of arrival. An example of this is the use of a single typewriter for output of
messages to a main operator. This method of sharing a device ensures that
a block of data is input or output as an indivisible entity. When sequential
media such as paper tape, punched cards, or magnetic tape are used, how-
ever, an internal process must have exclusive access to the entire document.
This is obtained by calling the following monitor procedure:

reserve process(name, result)

The result indicates whether the reservation has been accepted or not. An
external process that handles sequential documents of this kind rejects mes-
sages from all internal processes except the one that has reserved it. Rejec-
tion is indicated by the result of the procedure wait answer.

During the removal of an internal process, the monitor removes all reser-
vations made by it. Internal processes can, however, also do this explicitly
by means of the monitor procedure:

release process(name)

5.3 Creation and Removal

From the operator’s point of view an external process is created when he
mounts a document on a device and names it. The name must, however,
be communicated to the monitor by means of an operating system, i.e. an
internal process that controls the execution of programs. Thus it is more
correct to say that external processes are created when internal processes
assign names to peripheral devices. This is done by means of the monitor
procedure:

create peripheral process(name, device number, result)

The monitor has, in fact, no way of ensuring whether a given document
is mounted on a device. Furthermore, there are some devices which operate
without documents, e.g. the real-time clock.

The name of an external process can be explicitly removed by a call of
the monitor procedure:
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remove process(name, result)

It is also possible to implement an automatic removal of the process name
when the monitor detects operator intervention in a device. At present, this
is done only in connection with magnetic tapes (see Section 10.1).

5.4 Replacement of External Processes

The decision to control input/output by means of interrupt procedures
within the monitor, instead of using dedicated internal processes for each
kind of peripheral device, was made to obtain immediate initiation of in-
put/output after the sending of messages. In contrast the activation of an
internal process merely implies that it is linked to the time slice queue; after
activation several time slices can elapse before the internal process actually
starts to execute instructions.

The price paid for the present implementation of external processes is
a prolongation of the time spent in the disabled mode within the monitor.
This limits the system’s ability to cope with real-time events, i.e. data that
are lost unless they are input and processed within a certain time.

An important consequence of the uniform handling of internal and ex-
ternal processes is that it allows us to replace any external process by an
internal process of the same name; other processes that communicate with
it are quite unaware of this replacement.

Thus it is possible to improve the response time of the system by replacing
a time-consuming external process, such as the paper tape reader, by a
somewhat slower internal process, which executes privileged instructions in
the enabled mode.

This type of replacement also makes it possible to enforce more complex
rules of access to a document. In the interests of security, for example, one
might want to limit the access of an internal process to one of several files
recorded on a particular magnetic tape. This can be ensured by an internal
process that traps all messages to the tape and decides whether they should
be passed on to it.

As a final example let us consider the problem of debugging a process
control system before it is connected to an industrial plant. A convenient
way of doing this is to replace analog inputs with an internal process that
simulates relevant values of actual measuring instruments.

We conclude that the ability to replace any process in the system with
another process is a very useful tool. This can now be seen as a practical
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result of the general, but somewhat vague idea (expressed in Section 2.2)
that internal and external processes are independent processes, which differ
only in their processing capability.

6 INTERNAL PROCESSES

This chapter explains the creation and control of internal processes. The
emphasis is on the hierarchal structuring of internal processes, which makes
it possible to extend the system with new operating systems. The dynamic
behaviour of the system is explained in terms of process states and the
transition between these.

6.1 Creation, Control, and Removal

Internal processes are created on request from other internal processes by
means of the monitor procedure:

create internal process(name, parameters, result)

The monitor initializes the process description of the new internal process
with its name and storage area selected by the parent process. The storage
area must be within the parent’s own area. Also specified by the parent is
a protection key, which must be set in all storage words of the child process
before it is started.

After creation the child process is simply a named storage area, which
is described within the monitor. It has not yet been linked to the time slice
queue.
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The parent process can now load a program into the child process by
means of an input operation. Following this the parent can initialize the
registers of its child using the monitor procedure:

modify internal process(name, registers, result)

The register values are stored in the process description until the child pro-
cess is started. As a standard convention adopted by parent processes (but
not enforced by the monitor), the registers inform the child about the pro-
cess descriptions of itself, its parent, and the typewriter console it can use
for operator communication.

Finally the parent can start program execution within the child by calling:

start internal process(name, result)

which sets the protection keys within the child and links it to the time slice
queue. The child now shares time slices with other active processes including
the parent.

On request from a parent process, the monitor waits for the completion
of all input/output initiated by a child process and stops it, i.e. removes it
from the time slice queue:

stop internal process(name, buffer, result)

The meaning of the message buffer will be made clear in Section 6.3.
In the stopped state a child process can be modified and started again,

or it can be completely removed by the parent process:

remove process(name, result)

During removal, the monitor generates dummy answers to all messages sent
to the child and releases all external processes used by it. Finally the protec-
tion keys are reset to the value used within the parent process. The parent
can now use the storage area to create other child processes.

6.2 Process Hierarchy

The idea of the monitor has been described as the simulation of an environ-
ment in which program execution and input/output are handled uniformly as
parallel, cooperating processes. A fundamental set of procedures allows the
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dynamic creation and control of processes as well as communication among
them.

For a given installation we still need, as part of the system, programs
that control strategies for operator communication, program scheduling, and
resource allocation. But it is essential for the orderly growth of the systems
that these operating systems be implemented as other programs. Since the
difference between operating systems and production programs is one of
jurisdiction only, this problem is solved by arranging the internal processes
in a hierarchy in which parent processes have complete control over child
processes.

After initial loading the internal store contains the monitor and an in-
ternal process, s, which is the basic operating system. S can create parallel
processes, a, b, c, etc., on request from consoles. These processes can in
turn create other processes, d, e, f, etc. Thus while s acts as a primitive
operating system for a, b, and c, these in turn act as operating systems for
their children, d, e, f, etc. This is illustrated by the following figure, which
shows a family tree of processes on the left and the corresponding storage
allocation on the right:

This family tree of processes can be extended to any level, subject only
to a limitation of the total number or processes. At present the maximum
number of internal processes is 23 including the basic operating system s.
It must, however, be remembered that the storage protection system only
provides mutual protection of 8 independent processes. When this number
is exceeded, one must rely on some of the processes being error free.
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In this multiprogramming system all privileged functions are imple-
mented in the monitor, which has no built-in strategy. Strategies can be
introduced at the various higher levels, where each process has the power to
control the scheduling and resource allocation of its own children. The only
rules enforced by the monitor are the following: a process can only allocate
a subset of its own resources (including storage) to its children; a process
can only modify, start, stop, and remove its own children.

The structure of the family tree is defined in the process descriptions
within the monitor. We emphasize that the only function of the tree is to
define the basic rules of process control and resource allocation. Time slices
are shared evenly among active processes regardless of their position in the
hierarchy, and each process can communicate with all other processes.

As regards the future development of operating systems, the most im-
portant characteristics can now be seen as the following:

1. New operating systems can be implemented as other programs without
modification of the monitor. In this connection we should mention that the
Algol and Fortran languages for the RC 4000 contain facilities for calling
the monitor and initiating parallel processes. Thus it is possible to write
operating systems in high-level languages.

2. Operating systems can be replaced dynamically, thus enabling an in-
stallation to switch among various modes of operation; several operating
systems can, in fact, be active simultaneously,

3. Standard programs and user programs can be executed under different
operating systems without modification; this is ensured by a standardization
of communication between parents and children.

6.3 Process States

We are now in a position to define the possible states of an internal process
as described within the monitor. An understanding of the transition from
one state to the other is vital as a key to the dynamic behaviour of the
system.

An internal process is either running (executing instructions or ready to
do so) or waiting (for an event outside the process). In the running state the
process is linked to the time slice queue; in the waiting state it is temporarily
removed from this queue.

A process can either be waiting for a message, an answer, or an event,
as explained in Chapter 4.

Of a more complex nature are the situations in which a process is waiting
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to be stopped or started by another process. In order to explain this we shall
once more refer to the family tree shown in the previous section.

Let us say that process b wants to stop its child f. The purpose of doing
this is to ensure that all program execution and input/output within the
storage area of process f is stopped. Since a part of the storage area has
been allocated to children of f, it is obviously necessary to stop not only the
child f but also all descendants of f. This is complicated by the fact that some
of these descendants may already have been stopped by their own parents.
In the present example process g may still be running, while process h may
have been stopped by its parent f. Consequently the monitor should only
stop processes f and g.

Consider now the reverse situation, in which process b starts its child
f again. Now the purpose is to reestablish the situation exactly as it was
before process f was stopped. Thus the monitor must be very careful only to
start those descendants of f that were stopped along with f. In our example
the monitor must start processes f and g but not h. Otherwise we confuse f,
which still relies on its child h being stopped.

Obviously, then, the monitor must distinguish between processes that
are stopped by their parents and by their ancestors.

The possible states of an internal process are the following:

running
running after error
waiting for message
waiting for answer
waiting for event
waiting for start by parent
waiting for stop by parent
waiting for start by ancestor
waiting for stop by ancestor
waiting for process function

A process is created in the state waiting for start by parent. When it is
started, its state becomes running. The meaning of the state running after
error is explained in Section 8.1.

When a parent wants to stop a child, the state of the child is changed
to waiting for stop by parent, and all running descendants of the child are
described as waiting for stop by ancestor. At the same time these processes
are removed from the time slice queue.
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What remains to be done is to ensure that all input/output initiated by
these processes is terminated. In order to control this each internal process
description contains an integer called the stop count. The stop count is
increased by one each time the internal process initiates input/output from
an external process. On arrival of an answer from an external process,
the monitor decreases the stop count by one and examines the state of the
internal process. If the stop count becomes zero and the process is waiting
for stop by parent (or ancestor), its state is changed to waiting for start by
parent (or ancestor).

Only when all involved processes are waiting for start is the stop opera-
tion finished. This can last some time, and it may not be acceptable to the
parent (being an operating system with many other duties) to be inactive
for so long. For this reason the stop operation is split into two parts. The
stop procedure:

stop internal process(name, buffer, result)

only initializes the stopping of a child and selects a message buffer for the
parent. When the child and its running descendants are completely stopped,
the monitor delivers an answer to the parent in this buffer. Thus the parent
can use the procedures wait answer or wait event to wait for the completion
of the stop.

A process can be in any state when a stop is initiated. If it is waiting for
a message, answer, or an event, its state will be changed to waiting for stop,
as explained above, but at the same time its instruction counter is decreased
by two in order that it can, repeat the call of wait message, wait answer, or
wait event when it is started again.

It should be noted that a process can receive messages and answers in
its queue in any state. This ensures that a process does not loose contact
with its surroundings while stopped.

The meaning of the state waiting for process function is explained in
Section 9.1.

7 RESOURCE CONTROL

This chapter describes a set of monitor rules that enables a parent process
to control the allocation of resources to its children.



   

26 PER BRINCH HANSEN

7.1 Introduction

In the multiprogramming system the internal processes compete for the fol-
lowing limited resources:

computing time
storage and protection keys
message buffers
process descriptions
peripheral devices
backing storage

Initially all resources are owned by the basic operating system s. As a
basic principle enforced by the monitor a process can only allocate a subset
of its own resources to a child process. These are returned to the parent
process when the child is removed.

7.2 Time Slice Scheduling

All running processes are allocated time slices in a cyclical manner. Depend-
ing on the interrupt frequency of the hardware interval timer, the length of a
time slice can vary between 1.6 and 1638.4 milliseconds. A reasonable time
slice is 25.6 milliseconds; with shorter intervals the percentage of computing
time consumed by timer interrupts grows drastically; with longer intervals
the delay between activation and execution of an internal process increases.

In practice internal processes often initiate input/output and wait for it
in the middle of a time slice. This creates a scheduling problem when internal
processes are activated by answers: Should the monitor link processes to the
beginning or to the end of the time slice queue? The first possibility ensures
that processes can use peripherals with maximum speed, but there is the
danger that a process can monopolize computing time by communicating
frequently with fast devices. The second choice prevents this, but introduces
a delay in the time slice queue, which slows down peripherals.

We have introduced a modified form of round-robin scheduling to solve
this dilemma. As soon as a process is removed from the time slice queue,
the monitor stores the actual value of the time quantum used by it. When
the process is activated again, the monitor compares this quantum with the
maximum time slice. As long as this limit is not exceeded, the process is
linked to the beginning of the queue; otherwise it is linked to the end of the
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queue and its time quantum is reset to zero. The same test is applied when
the interval timer interrups an internal process.

This scheduling attempts to share computing time evenly among active
internal processes regardless of their position in the hierarchy. It permits
a process to be activated immediately until it threatens to monopolize the
central processor, only then is it pushed into the background to give other
processes a chance. This is admittedly a built-in strategy at the microlevel.
Parent processes can in fact only control the allocation of computing time
to their children in larger portions (on the order of seconds) by means of the
procedures start and stop internal process.

For accounting purposes the monitor retains the following information
for each internal process: the time at which the process was created and the
sum of time quantums used by it; these quantities are denoted start time
and run time.

7.3 Storage Allocation and Protection

An internal process can only create child processes within its own storage
area. The monitor does not check whether storage areas of child processes
overlap each other. This freedom can be used to implement time-sharing
of a common storage area among several processes as described in Sections
10.2 and 10.4.

During creation of an internal process the parent must specify the values
of the protection register and the protection key used by the child. In the
protection register each bit corresponds to one of the eight possible protec-
tion keys; if a bit is zero the process can change or execute storage words
with the corresponding key.

The protection key is the key that is set in all storage words of the
child process itself. A parent process can only allocate a subset of its own
protection keys to a child. It has complete freedom to allocate identical or
different keys to its children. The keys remain accessible to the parent after
creation of a child.

7.4 Message Buffers and Process Descriptions

The monitor only has room for a finite number of message buffers and tables
describing internal processes and the so-called area processes (files on the
backing store used as external processes). A message buffer is selected when
a message is sent to another process; it is released when the sending process
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receives an answer. A process description is selected when an internal process
creates another internal process or an area process, and released when the
process is removed.

Thus it is clear that message buffers and process descriptions only assume
an identity when they are actually used. As long as they are unused, they can
be regarded as anonymous pools of resources. Consequently it is sufficient to
specify the maximum number of each resource an internal process can use.
These so-called buffer claim, internal claim, and area claim are defined by
the parent when a child process is created. The claims must be a subset of
the parent’s own claims, which are diminished accordingly, they are returned
to the parent when the child is removed.

The buffer claim defines the maximum number of messages an internal
process can exchange simultaneously with other internal and external pro-
cesses. The internal claim limits the number of children an internal process
can have at the same time. The area claim defines how many backing store
areas an internal process can access simultaneously.

The monitor decreases a claim by one each time a process actually uses
one of its resources, and increases it by one when the resource is released
again. Thus at any moment the claims define the number of resources that
can still be used by the process.

7.5 Peripheral Devices

A distinction has been made between peripheral devices and external pro-
cesses. An external process is created when a name is assigned to a device.

Thus it is also true of peripheral devices that they only assume an identity
when they are actually used for input/output. Indeed the whole idea of
identification by name is to give the operator complete freedom in allocation
of devices. It would therefore seem natural to control the allocation of devices
to internal processes by a complete set of claims—one for each kind of device.

In a system with remote peripherals, however, it is unrealistic to treat all
devices of a given kind as a single, anonymous pool. An operating system
must be able to force its children and their human operators to remain within
a certain geographical configuration of devices. It should be noted that the
concept of configuration must be defined in terms of physical devices and
not in terms of external processes, since a parent generally speaking does
not know in advance which documents its children are going to use.

Configuration control is exercised as follows. From the point of view
of other processes an internal process is identified by a name. Within the
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monitor, however, an internal process can also be identified by a single bit
in a machine word. The process descriptions of peripheral devices include a
word in which each bit indicates whether the corresponding internal process
is a potential user of the device. Another word indicates the current user that
has reserved the device in order to obtain exclusive access to a document.

Initially the basic operating system s is a potential user of all peripherals.
A parent process can include or exclude a child as a user of any device,
provided the parent is also a user of it:

include user(child, device number, result)
exclude user(child, device number, result)

During removal of a child, the monitor excludes it as a user of all devices.
All in all three conditions must be fulfilled before an internal process can

initiate input/output:

The device must be an external process with a unique name.

The internal process must be a user of the device.

The internal process must reserve the external process if it controls a
sequential document.

7.6 Privileged Functions

Files on the backing store are described in a catalog, which is also kept on
the backing store. Clearly there is a need to be able to prevent an internal
process from reserving an excessive amount of space in the catalog or on the
backing store as such. It seems difficult, however, to specify a reasonable
rule in the form of a claim that is defined once and for all when a child
process is created. The main difficulty is that catalog entries and data areas
can survive the removal of the process that created them; in other words
backing storage is a resource a parent process can loose permanently by
allocating it to its children.

As a half-hearted solution we have introduced the concept of privileged
monitor procedures. A parent process must supply each of its children with
a function mask, in which each bit specifies whether the child is allowed
to perform a certain monitor function. The mask must be a subset of the
parent’s own mask.

At present the privileged functions include all monitor procedures that:
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change the catalog on the backing store,
create and remove names of peripheral devices,
change the real-time clock.

8 MONITOR FEATURES

This chapter is a survey of specific monitor features such as internal interrup-
tion, the real-time clock, conversational access from consoles, and permanent
storage of files on the backing store. Although these are not essential primi-
tive concepts, they are indispensable features of practical multiprogramming
systems.

8.1 Internal Interruption

The monitor can assist internal processes with the detection of infrequent
events such as violation of storage protection or arithmetic overflow. This
causes an interruption of the internal process followed by a jump to an
interrupt procedure within the process.

The interrupt procedure is defined by calling the monitor procedure:

set interrupt(interrupt address, interrupt mask)

When an internal interrupt occurs, the monitor stores the values of reg-
isters at the head of the interrupt procedure and continues execution of the
internal process in the body of the procedure:

interrupt address: working registers
instruction counter
interrupt cause
(execution continues here)

The system distinguishes between the following causes of internal inter-
ruption:

protection violation
integer overflow
floating-point overflow or underflow
parameter error in monitor call
breakpoint forced by parent
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The interrupt mask specifies whether arithmetic overflow should cause
internal interruption. Other kinds of internal interrupts cannot be masked
off.

If an internal process provokes an interrupt without having defined an
interrupt procedure after its creation, the monitor removes the process from
the time slice queue and changes its state to running after error. The process
does not receive any more computing time in this state, but from the point
of view of other processes it is still an existing process. The parent of the
erroneous process can, however, reactivate it by means of stop and start.

A parent can force a breakpoint in a child process as follows: first, stop
the child; second, fetch the registers and interrupt address from the process
description of the child and store the registers in the interrupt area together
with the cause; third, modify the registers of the child to ensure that program
execution continues in the interrupt procedure; fourth, start the child again.

8.2 Real-Time Clock

Real time is measured by means of a hardware interval timer, which counts
modulo 16384 in units of 0.1 msec and interrupts the computer regularly
(normally every 25.6 msec).

The monitor uses this timer to update a programmed real-time clock of
48 bits. This clock can be initialized and sensed by means of the procedures:

set clock(clock)
get clock(clock)

The setting of the clock is a privileged function. A standard convention
adopted by operating systems (but not enforced by the monitor) is to let the
clock express the time interval elapsed since midnight 31 December 1967 in
units of 0.1 msec.

The interval timer is also used to implement an external process that
permits the synchronization of internal processes with real time. All internal
processes can send messages to this clock process. After the elapse of a time
interval specified in the message, the clock process returns an answer to the
sender. In order to avoid a heavy overhead time of clock administration, the
clock process only examines its queue every second.

8.3 Console Communication

A multiprogramming system encourages a conversational mode of opera-
tion, in which users interact directly with internal processes from typewriter



  

32 PER BRINCH HANSEN

consoles. The external processes for consoles clearly reflect this objective.
Initially all program execution is ordered by human operators who com-

municate with the basic operating system. It would be very wasteful if the
operating system had to examine all consoles regularly for possible operator
requests. Therefore our first requirement is that consoles be able to activate
internal processes by sending messages to them. Note that other external
processes are only able to receive messages.

Second, it must of course be possible for an internal process to open a
conversation with any console.

Third, a console should accept messages simultaneously from several in-
ternal processes. This will enable us to control more than one internal pro-
cess from the same console, which is valuable in a small installation.

In short, consoles should be independent processes that can open conver-
sations with any internal process and vice versa. The console should assist
the operator with the identification of the internal processes using it.

An operator opens a conversation by depressing an interrupt key on the
console. This causes the monitor to select a line buffer and connect it to
the console. The operator must now identify the internal process to which
his message is addressed. Following this he can input a message of one line,
which is delivered in the queue of the receiving process.

A message to the basic operating system s can, for example, look like
this (the word in italics is output by the console process in response to the
key interrupt):

to s
new pbh run

An internal process opens a conversation with a console by sending a
message to it. Before the input/output operation is initiated, the console
identifies the internal process to the operator. This identification is sup-
pressed after the first of a series of messages from the same process.

In the following example internal processes a and b share the same console
for input/output. Process identifications are in italics:
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to a
first input line to a
second input line to a
from b
first output line from b
second output line from b
from a
first output line from a
etc.

Note that these processes are unaware of their sharing the same console.
From the point of view of internal processes the identification of user pro-
cesses makes it irrelevant whether the system contains one or more consoles.
(Of course one cannot expect operators to feel the same way about it).

8.4 Files on Backing Store

8.4.1 Introduction

The monitor permits semi-permanent storage of files on a backing store
consisting of one or more drums and disks. The monitor makes these appear
as a single backing store with a number of segments of 256 words each. This
logical backing store is organized as a collection of named data areas. Each
area occupies a consecutive number of segments on a single backing store
device. A fixed part of the backing store is reserved for a catalog describing
the names and locations of data areas.

Data areas are treated as external processes by the internal processes;
input/output is initiated by sending messages to the areas specifying in-
put/output operations, storage areas, and relative segment numbers within
the areas. The identification of a data area requires a catalog search. In
order to reduce the number of searches, input/output must be preceded by
an explicit creation of an area process description within the monitor.

8.4.2 Catalog Entries

The catalog is a fixed area on the backing store divided into a number of
entries identified by unique names. Each entry is of fixed length and consists
of a head, which identifies the entry, and a tail, which contains the rest of
the information. The monitor distinguishes between entries describing data
areas on the backing store and entries describing other things.
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An entry is created by calling the monitor procedure:

create entry(name, tail, result)

The first word of the tail defines the size of an area to be reserved and
described in the entry; if the size is negative or zero, no area is reserved.
The rest of the tail contains nine optional parameters, which can be selected
freely by the internal process.

Internal processes can look up, change, rename, or remove existing entries
by means of the procedures:

look up entry(name, tail, result)
change entry(name, tail, result)
rename entry(name, new name, result)
remove entry(name, result)

The catalog describes itself in an entry named catalog.
The search for catalog entries is minimized by using a hashed value of

names to define the first segment to be examined. Each segment contains
15 entries; thus most catalog searches only require the input of a single
segment unless the catalog is filled to the brim. The allocation of data areas
is speeded up by keeping a bit table of available segments within the monitor.
In practice the creation or modification of an entry therefore requires only
the input and output of a single catalog segment.

8.4.3 Catalog Protection

Since many users share the backing store as a common data base, it is
vital that they have a means of protecting their files gainst unintentional
modification or complete removal. The protection system used is similar to
the storage protection system: each catalog entry is supplied with a catalog
key in its head; the rules of access within an internal process are defined by a
catalog mask set by the parent of the internal process. Each bit in this mask
corresponds to one of 24 possible catalog keys; if a bit is one, the internal
process can modify or remove entries with the corresponding key; otherwise
it can only look up these entries. A parent can only allocate a subset of
its own catalog keys to a child process. Initially the basic operating system
owns all keys.

In order to prevent the catalog and the rest of the backing store from be-
ing filled with irrelevant data, the concept of temporary entry is introduced.
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This is an entry that can be removed by another internal process as soon
as the internal process that created the entry has been removed. Typical
examples are working areas used during program compilation and data areas
created, but not removed, by faulty programs.

This concept is implemented as follows. After creation of an internal
process, the monitor increases an integer creation number by one and stores
it within the new process description. Each time an internal process creates
a catalog entry, the monitor includes its creation number in the entry head
indicating that it is temporary. Internal processes can at any time scan
the catalog and remove all temporary entries provided the corresponding
creators no longer exist within the monitor. Thus in accordance with our
basic philosophy the monitor only provides the necessary mechanism for the
handling of temporary entries, but leaves the actual strategy of removal to
the hierarchy of processes.

In order to ensure the survival of a catalog entry, an internal process
must call the privileged monitor function:

permanent entry(name, catalog key, result)

to replace the creation number with a catalog key. A process can of course
only set one of its own keys in the catalog; otherwise it might fill the catalog
with highly protected entries, which could be difficult to detect and remove.

8.4.3 Area Processes

In order to be used for input/output a data area must be looked up in the
catalog and described as an external process within the monitor:

create area process(name, result)

The area process is created with the same name as the catalog entry.
Following this internal processes can send messages with the following

format to the area process:

message: input/output operation
first storage address
last storage address
first relative segment
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The reader is reminded that the tables used to describe area processes
within the monitor are a limited resource, which is controlled by means of
area claims defined by parent processes (Section 7.4).

The backing store is a random access medium that serves as a common
data base. ln order to utilize this property fully internal processes should be
able to input simultaneously from the same area (e.g. when several copies
of the Algol compiler are executed in parallel). On the other hand access to
an area should be exclusive during output, because its content is undefined
from the point of view of other processes.

Consequently we distinguish between internal processes that are poten-
tial users of an area process and the single process that may have reserved
the area exclusively. This distinction was also made for peripheral devices
(Section 5.2), but the rules of access are different here: An internal process
is a user of an area after the creation of it. This enables the internal process
to perform input as long as no other process reserves it. An internal pro-
cess can reserve an area process if its catalog mask permits modification of
the corresponding catalog entry. After reservation the internal process can
perform both input and output.

Finally we should mention that the catalog is described permanently as
an area process within the monitor. This enables internal processes to input
and scan the catalog sequentially, for instance, during the detection and
removal of temporary entries. Only the monitor itself, however, can perform
output to the catalog.

9 SYSTEM IMPLEMENTATION

This chapter gives important details about the implementation as well as
figures about the size and performance of the system.

9.1 Interruptable Monitor Functions

Some of the monitor functions are too long to be executed entirely in the dis-
abled mode, e.g. updating of the catalog on the backing store and creation,
start, stop, and removal of processes. These so-called process functions are
called as other monitor procedures, but behind the scenes they are executed
by an anonymous internal process, which only operates in disabled mode
for short intervals while updating monitor tables, otherwise the anonymous
process shares computing time with other internal processes.

When an internal process calls a process function, the following takes
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place: the calling process is removed from the time slice queue and its state
is changed to waiting for process function. At the same time the process
description is linked to the event queue of the anonymous process that is
activated. The anonymous process serves the calling processes one by one
and returns them to the time slice queue after completion of each function.

Process functions are interruptable like other internal processes. From
the point of view of calling processes, however, process functions are indi-
visible, since (1) they are executed only by the anonymous process one at a
time in their order of request, and (2) calling processes are delayed until the
functions are completed.

The following monitor procedures are implemented as interruptable func-
tions:

create entry
look up entry
change entry
rename entry
remove entry
permanent entry
create area process
create peripheral process
create internal process
start internal process
stop internal process
modify internal process
remove process

9.2 Stopping Processes

According to theory an internal process cannot be stopped while in-
put/output is in progress within its storage area (Section 6.3). This re-
quirement is inevitable in the case of high-speed devices such as a drum
or a magnetic tape station, which are beyond program control during in-
put/output. On the other hand it is not strictly necessary to enforce this
for low-speed devices controlled by the monitor on a character-by-character
basis.

In practice the monitor handles the stop situation as follows:
Before an external process initiates high-speed input/output, it examines

the state of the sending process. If the sender is stopped (or waiting to be
stopped), input/output is not initiated, but the external process immedi-
ately returns an answer with block length zero; the sender must then repeat
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input/output after restart. If the sender is not stopped, its stop count is
increased and input/output is initiated. Note that if the stop count was
increased immediately after the sending of a message, the sending process
could only be stopped after completion of all previous operations pending
in the external queue. By increasing the stop count as late as possible, we
ensure that high-speed peripherals at most prevent the stopping of internal
processes during a single block transfer.

Low-speed devices never increase the stop count. During output an exter-
nal process fetches one word at a time from the sending process and outputs
it character by character regardless of whether the sender is stopped mean-
while. Before fetching a word the external process examines the state of the
sender. If it is stopped (or waiting to be stopped), output is terminated by
an answer defining the actual number of characters output; otherwise output
continues. During input an external process examines the state of the sender
after each character. If the sender is stopped (or waiting to be stopped), in-
put is terminated by an answer; otherwise the character is stored and input
continues. Some devices, such as the typewriter, lose the last input character
when stopped; others, such as the paper tape reader, do not. It can be seen
that low-speed devices never delay the stopping of a process.

9.3 System Size

After initial system loading the monitor and the basic operating system s
occupy a fixed part of the internal store. The size of a typical system is as
follows:
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words:
monitor procedures: 2400
code for external processes: 1150

clock 50
backing store 100
typewriters 300
paper tape readers 250
paper tape punches 150
line printers 100
magnetic tape stations 200

process descriptions and buffers: 1250
15 peripheral devices 350
20 area processes 200

6 internal processes 200
25 message buffers 300

6 console buffers 200
basic operating system s 1400

total system 6200

It should be noted that the 6 internal processes include the anonymous
process and the basic operating system, thus leaving room for 4 user pro-
cesses. As a minimum the standard programs (editor, assembler, and com-
pilers) require an internal process of 5–6000 words for their execution. This
means that a 16 k store can only hold the system plus 1–2 standard pro-
grams, while a 32 k store enables parallel execution of 4 such programs. A
small store can of course hold more programs, if these are written in machine
code and executed without the assistance of standard programs.

9.4 System Performance

The following execution times of monitor procedures are conservative esti-
mates based on a manual count of instructions. The reader should keep in
mind that the basic instruction execution time of the RC 4000 computer is
4 µsec. A complete conversation between two internal processes takes about
2 milliseconds distributed as follows:

msec
send message 0.6
wait answer 0.4
wait message 0.4
send answer 0.6



  

40 PER BRINCH HANSEN

It can be seen that one internal process can activate another internal
process in 0.6 msec, this is also approximately the time required to activate
an external process. An analysis shows that the 2 msec required by an
internal communication are used as follows:

percent
validity checking 25
process activation 45
message buffering 30

This distribution is so even that one cannot hope to speed up the system
by introducing additional, ad hoc machine instructions. The only realistic
solution is to make the hardware faster.

The maximum time spent in the disabled mode within the monitor limits
the system’s response to real-time events. The monitor procedures them-
selves are only disabled for 0.2–1 msec. The situation is worse in the case of
interrupt procedures that handle low-speed devices with hardware buffers,
because the monitor empties or fills such buffers in the disabled mode after
each interrupt. For the paper tape reader (flexowriter input) and the line
printer, the worst-case figures are:

empty reader buffer (256 characters) 20 msec
fill printer buffer (170 characters) 7 msec

It should be noted, however, that these buffers normally only contain 64–
70 characters corresponding to 4–5 msec. The worst-case situations can be
remedied either by using smaller input/output areas within internal pro-
cesses, or by replacing these external processes with dedicated internal pro-
cesses (Section 5.4).

Finally we shall look at the interruptable monitor functions. An internal
process of 5000 words can be created and controlled by a parent process with
the following speed:

msec
create internal process 3
modify internal process 2
start internal process 26
stop internal process 4
remove internal process 30
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Most of the time required to start and remove an internal process is used to
set storage protections keys.

Assuming that the backing store is a drum with a transfer time of 15
msec per segment, the catalog can be accessed with the following speed:

msec
create entry 38
look up entry 20
change entry 38
rename entry 85
remove entry 38
permanent entry 38

The execution time of process functions should be taken with some reser-
vations. First it must be remembered that process functions, like other in-
ternal processes, can be delayed for some time before they receive a time
slice. In practice process functions will be activated immediately as long
as they have not used a complete time slice (Section 7.2). Second one must
take into consideration the fact that process function calls are queued within
the monitor. Thus when a process wants to stop another process, the worst
thing that can happen is that the anonymous process is engaged in updating
the catalog. In this situation the stop is not initiated before the catalog has
been updated. One also has to keep in mind that process functions share the
drum or disk with other processes, and must wait for the completion of all
input/output operations that preceed their own in the drum or disk queue.
The execution times given here assume that process functions and catalog
input/output are initiated instantly.

9.5 System Tape

The first version of the multiprogramming system consists of the monitor,
the basic operating system s, and a program for initializing the catalog.
It is programmed in the Slang 3 language. Before assembly the system is
edited to include process descriptions of the peripheral devices connected to
a particular installation and to define the following options:
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number of storage bytes
number of internal processes
number of area processes
number of message buffers
number of console buffers
maximum time slice
inclusion of code for external processes
backing store configuration
size of catalog

The system is delivered in the form of a binary paper tape, which can
autoload and initialize itself. After loading the system starts the basic op-
erating system. Initially the operating system executes a program that can
initialize the backing store with catalog entries and binary Slang programs
input from paper tape. When this has been done, the operating system is
ready to accept operator commands from consoles.

10 SYSTEM POSSIBlLITIES

The strength of the monitor is the generality of its basic concepts, its weak-
ness that it must be supported by operating systems to obtain realistic mul-
tiprogramming. We believe that the ultimate limits to the use of the system
will depend on the imagination of designers of future operating systems. The
purpose of this chapter is to stimulate creative thinking by pointing out a
few of the possibilities inherent in the system.

10.1 Identification of Documents

In tape-oriented installations, operating systems should assist the operator
with automatic identification of magnetic tapes. At present the external
process concept gives the operator complete freedom to mount a magnetic
tape on any station and identify it by name. When a tape station is set in
the local mode, the monitor immediately removes its name to indicate that
the operator has interfered with it. The station gives an interrupt when
the operator returns it to the remote mode. Thus the monitor distinguishes
between three states of a tape station:

document removed (after intervention)
unidentified document mounted (after remote interruption)
identified document mounted (after process creation)



   

RC 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 43

It is a simple matter to introduce a watch-dog process in the monitor,
to which internal processes can send messages in order to receive answers
each time an unidentified tape is mounted somewhere. After reception of an
answer, an internal process can give the actual station a temporary name,
identify the tape by reading its label, and rename it accordingly.

Automatic identification requires general aggreement on the format of
tape labels, at least to the extent of assigning a standard position to the
names of tapes.

10.2 Temporary Removal of Programs

We have not imposed any restrictions on individual programs with respect to
their demand for storage, run time, and peripherals. It is taken for granted
that some programs will need most of the system resources for several hours.
Such large programs must not, however, prevent other users from obtaining
immediate access to the machine in order to execute more urgent programs
of short duration. Thus the system must permit temporary removal of a
program in order to make its storage area and peripherals available for other
programs. One example, where this is absolutely necessary, is the periodic
supervision of a real-time process combined with the execution of large back-
ground programs in idle intervals.

A program can be removed temporarily by stopping the corresponding
internal process and dumping its storage area on the backing store by an
output operation. Note that this dump automatically includes all children
and descendants created within the area. The monitor is only aware of the
process being stopped; it is still described within the monitor and can receive
messages from other processes.

It is now possible to create and start other processes in the same storage
area, since the monitor does not check whether internal processes overlap
each other as long as they remain within their parent processes. Peripherals
can also be taken from the dumped process and assigned to others simply
by mounting new documents and renaming the peripherals.

Temporary removal makes sense only if it is possible to restart a program
at a later stage. This requires reloading the program into its original storage
area as well as mounting and repositioning of its documents. After restart
the internal process can detect interference with its documents in one of two
ways: either it finds that a document does not exist any more, whereupon it
must ask the operator to mount and name it; or it discovers that an existing
document no longer is reserved by it, meaning that the operator has mounted
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it, but that it needs to be repositioned. These cases are indicated by the
result parameter after a call of wait answer.

The need for repositioning can also arise during normal program exe-
cution, if the operator interferes with a peripheral device (by mistake or in
order to move a document to a more reliable device). Consequently all major
programs should consider each input/output operation as a potential restart
situation.

10.3 Batch Processing

In the design of a batch processing system the distinction between parent and
child processes prevents the batch of programs from destroying the operating
system. Note that in general an operating system must remove a child
process (and not merely stop it) to ensure that all its resources are released
again (Section 7.4). Even then, it must be remembered that messages sent
by a child to other processes remain in their queues until these processes
either answer them or are removed (Section 4.4).

The multiprogramming capabilities can be utilized to accept job requests
in a conversational mode during execution of the batch. Thus a batch process-
ing system can include facilities for remote job entry combined with priority
scheduling of programs.

10.4 Time-Sharing

The basic requirement of a time-sharing system, in which a large number of
users have conversational access to the system from consoles, is the ability
to swap programs between the internal store and the backing store. A time-
sharing operating system must create an internal process for each user, and
make these processes share the same storage area by frequent removal and
restart of programs (say, every few seconds). The problem is that stopping a
process temporarily also means stopping its communication with peripherals.
Thus in order to keep typewriter input/output alive while a user process is
dumped, the system must include an internal process that buffers all data
between programs and consoles.

10.5 Real-Time Scheduling

We conclude these hints with an example of a real-time system. The appli-
cation we have in mind is a process control system, in which a number of
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programs must perform data logging, alarm scanning, trend logging, and so
forth periodically under the real-time control of an operating system.

This can be organized as follows: initially all task programs send mes-
sages to the operating system and wait for answers. The operating system
communicates with the clock process and is activated every second in order
to scan a time table of programs. If the real time exceeds the start time of
a task program, the operating system activates the program by an answer.
After completion of its task, the program again sends a message to the op-
erating system and waits for the answer. In response the operating system
increases the start time of the program by the period between two successive
executions of the task.
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