

THE RC 4000 REAL-TIME

CONTROL SYSTEM AT PULAWY

PER BRINCH HANSEN

(1967)

This paper describes a real-time control system implemented on the RC 4000

computer with an internal store of 4096 words. The system permits a number

of independent programs to be executed periodically on a time-sharing basis.

The first version of the system performs supervisory control of the ammonium

nitrate plant Pulawy II in Poland. After a description of the Pulawy system,

the choice of a time-sharing scheme and the handling of shared facilities are

discussed. This is followed by an evaluation of the size and performance of the

system.

1 Introduction

The multiprogramming system described in this paper was developed by
Regnecentralen on contract with the Danish engineering company Haldor
Topsøe. In connection with this project, Regnecentralen also developed a
medium-sized computer, the RC 4000, which is specially suited for real-time
control applications (Brinch Hansen 1967).

The system is implemented on the RC 4000 computer with an internal
store of 4096 words (backing storage is not used). It permits a number of
independent programs to be executed periodically under the real-time con-
trol of a monitor. For each program, the operator can select the start time
of its first execution and the time interval between its subsequent execu-
tions. The programs are executed in a simple time-sharing scheme, in which
each program in turn is allotted a small quantum of computing time. A
critical feature of any multiprogramming system is the handling of shared

P. Brinch Hansen, The RC 4000 real-time control system at Pulawy, BIT 7, 4 (1967),
279–288. Copyright c© 1967, Per Brinch Hansen.

1

2 PER BRINCH HANSEN

facilities. We have adopted the technique of binary semaphores suggested
by E.W. Dijkstra (1965).

The first version of the system will be installed in 1967 in the ammonia
nitrate plant Pulawy II, constructed by Haldor Topsøe in Poland. Here, the
RC 4000 will perform regular alarm scanning, data logging, and evaluation
of production and consumption figures.

In the following, we describe the supervision of the Pulawy plant in
order to illustrate the requirements of a real-time control system and the
difficulties of implementation. This is followed by a discussion of the time-
sharing approach.

2 The RC 4000 Computer

The RC 4000 is a single-address, binary computer with typical instruction
execution times from 2.5 to 5.5 microseconds. The following characteristics
apply to the basic model used in the Pulawy plant.

Store: The internal store has a capacity of 4096 words. Each word con-
tains 24 information bits, 1 parity bit, and 1 protection bit.

Registers: There are four working registers of 24 bits each. Three of
these also function as index registers. The registers are addressable as the
first four words of the internal store.

Addressing: Words of 24 bits and half-words of 12 bits are directly ad-
dressable. Address modification includes indexing, indirect addressing, and
relative addressing.

Arithmetic: Integer arithmetic with operands of 12 and 24 bits is stan-
dard.

Input/Output: The standard data channel performs transfers of single
words between low-speed devices and working registers under program con-
trol. Program execution continues while input/output operations are in
progress.

Program Protection: In the RC 4000, the monitor program consists of
all storage words in which the protection bits are set. A program stored
in an unprotected area can neither alter nor jump to a protected area. All
input/output operations as well as control of the interruption system and
storage protection are handled by privileged instructions, which can only
be executed within the monitor. Attempts to violate the protection system
cause program interruption.

Program Interruption: The interruption system can register up to 24
signals simultaneously. These can be enabled and disabled individually. The

THE RC 4000 REAL-TIME CONTROL SYSTEM 3

interrupts are examined after each instruction; an enabled interrupt will
transfer control from the current program to the monitor. All interrupts
are disabled when the monitor is entered; they can be enabled again by a
privileged instruction.

3 The Pulawy Installation

The Pulawy II plant consists of three units for the production of ammo-
nia, nitric acid, and ammonium nitrate, respectively. The plant is operated
manually under the supervision of the computer. This section describes the
configuration of peripheral equipment at Pulawy.

The operator controls the operation of the system by means of a control
typewriter. A paper tape reader and punch are provided for the assembly
and loading of programs.

Real-time operation is controlled by two interval timers, which generate
interrupts every 2.5 milliseconds and every 1 second, respectively.

The computer receives measurements from the plant in the form of 543
analog inputs and 127 digital inputs. The analog inputs are primarily mea-
surements of temperatures, pressures, and flows expressed as voltages. The
voltages are converted to decimal numbers by an analog/digital converter.
The selection of input points is performed by a relay multiplexer with a
switching rate of 30 points per second.

Digital inputs are discrete events registered as single bits in external
registers: one type of digital input defines the status of alarm contacts in
the plant; another collects single counting pulses from kilowatt-hour meters
and bag-filling devices.

A digital output register controls a display panel that shows the operator
in which part of the plant alarm conditions exist.

Regular alarm reports and log reports are printed on two strip printers
and two typewriters.

4 Process Control Tasks

The computer examines the analog and digital inputs at regular intervals
and produces balance evaluation reports, log reports, and alarm reports.

Balance Evaluation: Every 8 hours, a report on 135 material balances is
printed on one of the log typewriters. This report shows the consumption
of electricity and production of ammonium nitrate during the period. It
also includes an evaluation of the total inflow and outflow of materials such

4 PER BRINCH HANSEN

as natural gas, steam, ammonia, and nitric acid. The information for this
report is measured as follows: the digital pulses are input every second
and accumulated in a table in the internal store; the analog flow values are
measured every 5 minutes and accumulated in another table.

Data Logging: Every hour, two reports, each on approximately 275 ana-
log values and 35 pulse counts, are printed simultaneously on the log type-
writers. The log reports can be regarded as a snapshot of the operating state
of the plant: the first report contains all data from the ammonia unit; the
second covers the nitric acid and ammonium nitrate units.

Alarm Scanning: Every 5 minutes, the computer examines the state of
61 alarm contacts; at the same time, 188 analog variables are scanned and
checked against alarm limits stored in a table. The operator is warned of
alarm conditions by visible lamps and the printing of alarm messages on the
strip printers.

Trend Logging: The operator can at any time request regular trend log-
ging of a single analog variable on the strip printers.

Self-Checking: In the event of a computer malfunction, the plant can still
be controlled manually while the system is being repaired. The computer
must however be able to detect and report such malfunction; accordingly,
in idle interals the computer performs checking of the instruction logic, the
registers, the adder, and the analog/digital converter.

Operator Control: The operator can at any time type a command to the
system on the control typewriter. The main options available to the operator
are: selection of the start time and period of each process control task;
exclusion of analog and digital inputs from one or more production lines;
changing of scale factors and alarm limits of analog inputs; and selection of
alternative output devices for the printing of balance and log reports.

5 Multiprogramming Approach

The table below summarizes the control tasks at Pulawy and their real-time
requirements:

THE RC 4000 REAL-TIME CONTROL SYSTEM 5

Task Normal period Completion time
Operator control – infinite
Pulse integration 1 second 2 milliseconds
Flow integration 5 minutes 10 seconds
Balance evaluation 8 hours 2.5 minutes
Data logging 1 1 hour 2.0 minutes
Data logging 2 1 hour 1.5 minutes
Alarm scanning 5 minutes 15 seconds
Trend logging – 1 second
Self-checking – infinite

In the following discussion, it is important to note that several of the tasks
use the same peripheral equipment: the analog/digital converter is used in
all tasks except operator control and pulse integration; the log typewriters
are shared in balance evaluation and data logging; the strip printers are used
in both alarm scanning and trend logging.

From this description of the supervision of the Pulawy plant, we can
draw a number of conclusions about the implementation of the real-time
control system. We have a single computer that must perform a number of
independent tasks, each with its own real-time requirements. The tasks are
executed cyclically in periods determined by the operator. We have chosen
to implement the tasks as separate programs, because they have individual
and variable periods of execution. It is obvious, however, that we cannot
fulfill the real-time requirements by executing one task program at a time:
two task programs may well demand to be started at the same time; the
time required for a single execution of a task program may also be longer
than the time interval between successive executions of other task programs.
Thus we are forced to introduce a multiprogramming scheme in which the
computer performs rapid time-multiplexing among the task programs.

Ease of implementation requires that a task program can be programmed
in as straightforward manner as in purely sequential programming; accord-
ingly, time-sharing among task programs must be handled automatically by
a monitor program activated regularly by interrupts from a clock.

For the sake of generality and simplicity, the individual task programs
must be regarded as being independent of one another. In particular, we
do not wish to impose any restrictions on the relative timing of programs.
The operator must have complete freedom to change the frequency of task
executions individually. He must even be able to stop one or more tasks
completely for a period of time. The main problem introduced by this free-
dom is to find a general way to avoid conflicts about facilities shared among

6 PER BRINCH HANSEN

the task programs.
The solution to these problems is considered in the following sections.

6 Real-time Scheduling

The choice of a multiprogramming scheme must be based on the knowledge
of the computing capacity required in worst-case situations. In a heavily
loaded system, it may be necessary to establish a system of priorities among
the task programs to ensure that the most urgent tasks are completed first.
A simple estimate of the system load at Pulawy convinced us that a priority
scheme would place unnecessary restrictions on the system. First, we have no
backing store to slow down the execution of programs. Second, the majority
of the tasks are limited by low-speed devices with input/output times of
from 35 milliseconds (analog input) to 70 milliseconds (typewriter output).
The programs use less than 1 millisecond each to process an input word or
produce an output word; that is to say, a task program uses only 1/70 to
1/35 of the computing time. With only nine task programs, the load is so
light that we can afford to serve all programs on equal terms.

The real-time operation of the monitor is controlled by an interval timer,
which causes a program interruption every second. The monitor increments
a clock counter by one, and examines a table defining the start time and
period of each task program. If real-time exceeds the scheduled start time
of a program, a flag bit is set and the start time is increased by the value of
the period. When the scan of the time table is completed, the interrupted
task program is resumed.

Time-sharing among active task programs is controlled by another in-
terval timer as follows: every 2.5 milliseconds, the current task program is
interrupted and the contents of the working registers and instruction counter
are stored in a dump table. The monitor scans the flag bits cyclically until
it finds another active task program, which is then started. After another
2.5 milliseconds, control is transferred to a third program, and so on.

When a task program is finished, it calls the monitor asking it to turn its
flag bit off, after which the program does not receive computing time until
the next scheduled run.

Switching from one task program to another is also performed, whenever
a program must wait for the completion of an input/output operation or
whenever a common facility is occupied by another program. Here the restart
address in the dump table is adjusted to make the task program repeat the
call of the input/output procedure or the reservation procedure the next

THE RC 4000 REAL-TIME CONTROL SYSTEM 7

time it receives a time quantum. Thus the monitor is relieved of having to
keep track of queues of shared facilities.

The selection of a time quantum was influenced by the following consid-
erations. The quantum had to be at least as great as the average response
time required by a task program for a single input/output operation. At Pu-
lawy this was about 1 millisecond. The upper limit was determined by the
number of programs using the whole time quantum for computing. Too large
a quantum would slow down the task programs limited by input/output, and
thus degrade the performance of the low-speed devices. At Pulawy, the self-
checking program was the only one of this type. Experiments showed that a
time quantum 2–3 milliseconds resulted in the shortest completion time for
all task programs.

7 Shared Facilities

We shall now consider the problem of mutual exclusion that arises, whenever
two or more independent programs demand access to a common facility.
Our understanding of this problem has been profoundly influenced by the
monograph of E.W. Dijkstra (1965), Cooperating Sequential Processes. In
the following we discuss his technique of binary semaphores as applied to
our system.

The task programs at Pulawy can be regarded as independent programs,
in as much they do not depend on explicit knowledge of one another’s struc-
tures and speed ratios. The programs communicate with one another only
for short intervals to ensure mutual exclusion from shared facilities. This
communication implies inspection of and assignment to common booleans,
called binary semaphores. Each semaphore is associated with a shared facil-
ity. It has the value zero if the facility is available, and one if it is busy.

When a program wishes to reserve a facility, it must inspect the corre-
sponding semaphore. If the facility is available, the program will immediately
occupy it by assigning the value one to the semaphore; otherwise the program
must wait until the facility has been released. In the RC 4000 computer,
this reservation can be made by the following sequence of instructions:

RESERVE: LOAD, SEMAPHORE
SKIP IF EQUAL TO, 0
JUMP TO, RESERVE
LOAD ADDRESS, 1
STORE, SEMAPHORE

8 PER BRINCH HANSEN

Consider now the case where program A is inspecting a semaphore.
It may happen that the program is interrupted after the loading of the
semaphore, but before inspection and assignment to it. The working reg-
ister containing the value of the semaphore is then stored in the dump ta-
ble within the monitor, and program B is started. B may load the same
semaphore and find that the facility if available. Accordingly, B assigns the
value one to the semaphore and starts using the facility. After a while B is
interrupted, and at some later time A is restarted with the original contents
of the working registers reestablished from the dump table. Program A con-
tinues the inspection of the original value of the semaphore and concludes
erroneously that the facility is available.

This conflict arises because the task programs have no control over the
interrupt system. The only indivisible operations available to the task pro-
grams are single instructions such as load, compare, and store. The reserva-
tion sequence can, however, be made an indivisible entity by incorporating
it in the monitor program. The monitor is protected in the store and can
only be called by a task program by provoking a program interruption (for
example by executing a privileged instruction). This will transfer control to
the monitor, with the interrupt system disabled. The monitor is now able
to perform any sequence of instructions as an indivisible entity, before it
reenables the interrupt system.

In our system, all semaphores are implemented as bits in a single storage
word. The monitor can perform two primitive operations on the semaphores.
The reservation procedure (called P by Dijkstra) examines a number of
semaphores, selected by a mask, in parallel. If they are all zero, their values
are changed to one, and a return is made to the calling program. If some
of them are ones, the current task program is interrupted and another task
program is started. When the interrupted program receives a new quantum
of computing time, it repeats the call of the P procedure.

The releasing procedure (called V) sets a number of semaphores to zero,
and starts another task program. The transfer of control is necessary to
prevent a task program from monopolizing a facility. Most of the programs
perform cyclic reservations of the same facility in the following way:

Program A: P(semaphore);
critical section;
comment: common facility reserved by A;
V(semaphore);
remainder of cycle;
goto Program A;

THE RC 4000 REAL-TIME CONTROL SYSTEM 9

At Pulawy, the probability of program A being interrupted in the re-
mainder of the cycle before the next reservation is roughly equal to the
execution time of about 100 instructions divided by the time quantum, i.e.
500 µsec/2.5 msec = 1/5. Thus program switching on the V function is vital
for ensuring that the programs receive access to common facilities on equal
terms.

In our system 13 semaphores are associated with common data tables,
procedures, and input/output devices.

Two semaphores prevent the pulse and flow integration programs from
updating the tables of integrated data, while they are used by the balance
evaluation program.

To avoid a duplication of code, a number of procedures are shared by
all task programs. They perform the control typewriter input/output and
the input and conversion of analog values to proper engineering units. A
shared procedure executes a normal P function on entry, and a modified V
operation on exit. This V function ensures that the release of the procedure
and the return jump are made an indivisible entity.

The remainder of the semaphores are associated with the log typewriters,
the strip printers, and the paper tape punch.

8 Size and Performance

The time-sharing monitor and the process control programs for Pulawy were
designed, programmed, and tested in 18 man-months. The size of the pro-
grams and the data tables are as follows:

Words
Monitor 410
Common procedures 940
Operator control program 400
Pulse integration program 45
Flow Integration program 45
Balance evaluation program 415
Log program 1 55
Log program 2 55
Alarm scan program 110
Trend log program 25
Self-check program 215
Data description tables 1000
Data integration tables 300
Total system 4015

10 PER BRINCH HANSEN

The real-time performance of the multiprogramming system has been
evaluated by measuring the execution times obtained by sequential and time-
shared execution of the task programs. In the sequential run-mode, the
computer executes one task program at a time. In the time-sharing mode,
all task programs were executed simultaneously to obtain worst-case figures.

Sequential Time-shared
execution execution
(seconds) (seconds)

Pulse integration program < 1 < 1
Flow integration program 9 21
Alarm scan program 13 32
Log program 2 94 105
Log program 1 120 128
Balance evaluation program 147 153
Operator control program infinite infinite
Self-check program infinite infinite

The log and balance evaluation programs are mainly limited by the speed
of the typewriters. The multiprogramming system makes it possible to run
these at 90–96 percent of their maximum speed.

The bottleneck of the system is the analog/digital converter. At present,
this device is shared in a sequential maner among the flow, alarm, and log
programs. The scanning rate of flows and alarms thus drops to 41–43 percent
of the maximum speed.

In a system with a bigger internal store, this could have been improved by
introducing another task program that would scan the analog variables and
store them in a table, say, every five minutes. The other task programs would
then reference this table instead of repeating the analog measurements.

Acknowledgements

The design of the time-sharing monitor for Pulawy is the work of Peter
Kraft and the author. Later, we were joined by Karoly Simonyi, Jr., who
contributed valuable ideas to the project and did the programming along
with Peter Kraft. We are indebted to John Saietz of Haldor Topsøe for his
continuous support in the specification of the process control tasks.

References

Brinch Hansen, P. 1967. The logical structure of the RC 4000 computer. BIT 7, 3,
191–199.

THE RC 4000 REAL-TIME CONTROL SYSTEM 11

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind-
hoven, The Netherlands, (September).

